Bacterial infected wounds, which is characterized by easy infection, multiple inflammation and slow healing, is a complex symptom, resulting from metabolic disorder of the wound microenvironment. In this study, a series of self-healing double-network hydrogels based on KGRT peptide (Lys-Gly-Arg-Thr) with antibacterial, anti-inflammatory and optimizing cellular functions were designed to promote the healing of infected wounds with full-thickness skin defects. Moreover, the dextran hydrogelintroduces a large number of side chains, which are entangled with each other in the Schiff base network to form an interpenetrating structure. The hydrogel might regulate cell metabolism, differentiation and vascular endothelial growth factor (VEGF) function. Importantly, both in vitro and in vivo data showed that hydrogel not only has good antibacterial properties (99.8 %), but also can eradicate bacterial biofilm, effectively reduce inflammation (down-regulated IL-1β, TNF-α and ROS) and accelerate chronic wound healing process by speeding-up wound closure, increasing granulation tissue thickness, collagen deposition, angiogenesis (up-regulated CD31). The hydrogel could up-regulate mRNA expression of PI3K, AKT, ERK, eNOS, HIF-1α and VEGF, which were correlated with wound healing. Consistently, the hydrogel could promote infected wounds healing and inhibit inflammation through ERK/eNOS signaling pathway. Collectively, hydrogel has excellent clinical application potential for promoting infected wound healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.130781 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!