It has been reported that muscle functional unloading is accompanied by an increase in motoneuronal excitability despite the elimination of afferent input. Thus, we hypothesized that pharmacological potentiation of spontaneous contractile soleus muscle activity during hindlimb unloading could activate anabolic signaling pathways and prevent the loss of muscle mass and strength. To investigate these aspects and underlying molecular mechanisms, we used β-myosin allosteric effector Omecamtiv Mekarbil (OM). We found that OM partially prevented the loss of isometric strength and intrinsic stiffness of the soleus muscle after two weeks of disuse. Notably, OM was able to attenuate the unloading-induced decrease in the rate of muscle protein synthesis (MPS). At the same time, the use of drug neither prevented the reduction in the markers of translational capacity (18S and 28S rRNA) nor activation of the ubiquitin-proteosomal system, which is evidenced by a decrease in the cross-sectional area of fast and slow muscle fibers. These results suggest that chemically-induced increase in low-intensity spontaneous contractions of the soleus muscle during functional unloading creates prerequisites for protein synthesis. At the same time, it should be assumed that the use of OM is advisable with pharmacological drugs that inhibit the expression of ubiquitin ligases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2024.109961 | DOI Listing |
Cent Eur J Public Health
December 2024
Department of Public Health and Hygiene, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice, Slovak Republic.
Objective: Childhood overweight and obesity has been a major global problem for a long time, with a steadily increasing prevalence of obesity and a growing number of cases of serious health complications associated with childhood obesity. The main objective of the study is to assess the prevalence of overweight and obesity in boys and girls before the COVID-19 pandemic in the Czech Republic.
Methods: Body height, weight, BMI, and body composition (fat free mass, skeletal muscle mass, body fat, visceral fat area) were assessed in a cohort of 4,475 subjects (2,180 boys and 2,295 girls) aged 6-15 years.
J Endocrinol
January 2025
V Dubois, Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Glucocorticoids and androgens affect each other in several ways. In metabolic organs such as adipose tissue and the liver, androgens enhance glucocorticoid-induced insulin resistance and promote fat accumulation in male mice. However, the direct contribution of the androgen receptor (AR) to these effects is unknown.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Neurology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Skeletal muscle function gradually declines with aging, presenting substantial health and societal challenges. Comparative analysis of how aging affects fast- and slow-twitch muscles remains lacking. We utilized 20-month-old mice to reveal the aging effects on muscle structure and fiber composition, followed by bulk RNA sequencing for fast- and slow-twitch muscles and integration with human single-cell RNA sequencing dataset providing a comparative analysis across species.
View Article and Find Full Text PDFScand J Med Sci Sports
January 2025
Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
While acute exercise affects sarcoplasmic reticulum (SR) function, the impact of resistance training remains unclear. The purpose of the present study was to investigate SR Ca handling plasticity in response to moderate- and high-volume strength training in elite rowers. Twenty elite male (n = 12) and female (n = 8) rowers performed three weekly strength training sessions for 8 weeks and were randomly allocated to either perform 3 sets (3-SET) or progressive increase from 5 to 10 sets (10-SET) of 10 repetitions during the training period.
View Article and Find Full Text PDFCureus
January 2025
General Surgery, Sunshine Coast University Hospital, Birtinya, AUS.
Background Sarcopenia is the progressive and generalized loss of skeletal muscle and its associated function. Whilst it is typically associated with advanced age, it is also prevalent in patients with chronic diseases including cancer. Patients with esophageal cancer are at high risk of developing malnutrition and sarcopenia due to impaired oral intake, the effects of neoadjuvant treatment, and cancer-related cachexia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!