Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The upstream cascade dams play an essential role in the nutrient cycle in the Yangtze. However, there is little quantitative information on the effects of upstream damming on nutrient retention in the Three Gorges Reservoir (TGR) in China. Here, we aim to assess the impact of increasing cascade dams in the upstream area of the Yangtze on Dissolved Inorganic Nitrogen and Phosphorus (DIN and DIP) inputs to the TGR and their retention in the TGR and to draw lessons for other large reservoirs. We implemented the Model to Assess River Inputs of Nutrients to seAs (MARINA-Nutrients China-2.0 model). We ran the model with the baseline scenario in which river damming was at the level of 2009 (low) and alternative scenarios with increased damming. Our scenarios differed in nutrient management. Our results indicated that total water storage capacity increased by 98 % in the Yangtze upstream from 2009 to 2022, with 17 new large river dams (>0.5 km) constructed upstream of the Yangtze. As a result of these new dams, the total DIN inputs to the TGR decreased by 15 % (from 768 Gg year to 651 Gg year) and DIP inputs decreased by 25 % (from 70 Gg year to 53 Gg year). Meanwhile, the molar DIN:DIP ratio in inputs to the TGR increased by 13 % between 2009 and 2022. In the future, DIN and DIP inputs to the TGR are projected to decrease further, while the molar DIN:DIP ratio will increase. The Upper Stem contributed 39 %-50 % of DIN inputs and 63 %-84 % of DIP inputs to the TGR in the past and future. Our results deepen our knowledge of nutrient loadings in mainstream dams caused by increasing cascade dams. More research is needed to understand better the impact of increased nutrient ratios due to dam construction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.171683 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!