Adsorption of heavy metals by clay minerals occurs widely at the solid-liquid interface in natural environments, and in this paper, the phenomenon of adsorption of Cd, Cu, Pb, Zn, Ni and Co by montmorillonite, kaolinite and illite was simulated using machine learning. We firstly used six machine learning models including Random Forest(R), Extremely Forest(E), Gradient Boosting Decision Tree(G), Extreme Gradient Boosting(X), Light Gradient Boosting(LGB) and Category Boosting(CAT) to feature engineer the metal cations and the parameters of the minerals, and based on the feature engineering results, we determined the first order hydrolysis constant(log K), solubility product constant(SPC), and higher hydrolysis constant (HHC) as the descriptors of the metal cations, and site density(SD) and cation exchange capacity(CEC) as the descriptors of the clay minerals. After comparing the predictive effects of different data cleaning methods (pH method, Box method and pH-Box method) and six model combinations, it was finally concluded that the best simulation results could be achieved by using the pH 50-Box method for data cleaning and Extreme Gradient Boosting for modelling (RMSE = 4.158 %, R = 0.977). Finally, model interpretation was carried out using Shapley explanation plot (SHAP) and partial dependence plot(PDP) to analyse the potential connection between each input variable and the output results. This study combines machine learning with geochemical analysis of the mechanism of heavy metal adsorption by clay minerals, which provides a different research perspective from the traditional surface complexation model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.171733 | DOI Listing |
Chem Commun (Camb)
January 2025
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
This study demonstrates that metal-doped-clay (MDC) can be a selective platform for ribose produced from formaldehyde under abiotic conditions. Ribose exhibits superior retention compared with other carbohydrates on naturally occurring minerals on the early Earth in the presence of divalent cations. This finding offers an insight into the necessity of the emergence of ribose as the backbone of extant RNA.
View Article and Find Full Text PDFSci Rep
January 2025
College of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130012, China.
Globally, heavy metal (HM) soil pollution is becoming an increasingly serious concern. Heavy metals in soils pose significant environmental and health risks due to their persistence, toxicity, and potential for bioaccumulation. These metals often originate from anthropogenic activities such as industrial emissions, agricultural practices, and improper waste disposal.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Faculty of Agronomy and Veterinary Medicine, University of Brasília, 70910-970, Brasília, DF, Brazil. Electronic address:
Soil heavy metal (HM) contamination is a major concern in agricultural lands due to its potential to enter the food chain and its adverse health effects. Remediation materials such as biochar (BC) and zeolites (ZE) have been studied for their potential to mitigate risks associated with soil HM contamination. This meta-analysis evaluates changes in the availability of Cd, Cu, Pb, and Zn following the application of BC and ZE to soil, whether applied individually, in combination (BC + ZE), or with additives (BC + ZE + A).
View Article and Find Full Text PDFACS Omega
December 2024
Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
Hydrogen (H) offers a less carbon-intensive energy production method than natural gas. The potential of utilizing hydrogen at a large scale within the future energy mix to fuel the world opens the door to investigating hydrogen production from heavy and extra-heavy oil reservoirs. Various reaction mechanisms are involved in the in situ combustion gasification of heavy oil to produce sustainable and low carbon intensive hydrogen.
View Article and Find Full Text PDFSci Rep
December 2024
School of Earth Sciences, Northeast Petroleum University, Daqing, 163318, China.
Numerous gas-rich, low resistivity shale wells have been discovered in the Luzhou deep shale gas of Sichuan Basin, providing strong evidence that low-resistivity shale also holds significant potential for shale gas exploration. However, existing research has limited understanding of the mechanisms of low resistivity in shale, and the mechanisms by which low-resistivity influences gas content remain unclear. Here, we conducted X-ray diffraction analysis (XRD), total organic carbon (TOC) content, vitrinite reflectance (Ro), low-temperature N and CO adsorption experiments, methane isothermal adsorption experiments, nano-CT, laser Raman experiment, and well-logging curve to quantality evaluate the low resistivity shale formation mechanisms and explore the factors influencing gas content in low resistivity shale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!