Background & Aims: CLSPN, a critical component of the S-phase checkpoint in response to DNA replication stress, has been implicated in the pathogenesis of multiple tumor types. The rising incidence of hepatocellular carcinoma (HCC) poses a significant challenge to global public health. Despite this, the specific functions of CLSPN in the development of HCC remain poorly understood.

Methods: We systematically evaluated the expression of CLSPN, prognosis and immune infiltration in patients with HCC and identified a competing endogenous RNA (ceRNA) network by using public database. The RT-qPCR, western blot, CCK8, transwell, flow cytometry, animal experiments, proteasome inhibition experiment, Co-IP assay and mass spectrometry were applied to explore its biological functions, post-transcriptional modifications and potential molecular mechanisms of CLSPN in HCC.

Results: We verified the expression of CLSPN, and its high expression is an independent prognostic factor in HCC. The expression of CLSPN is also associated with the immune microenvironment of HCC. CLSPN silencing inhibited the proliferation, migration, invasion and cell cycle progression of HCC cells. We established a PSMA3-AS1/hsa-miR-101-3p/CLSPN regulator axis in HCC. CLSPN was influenced by ubiquitination and was involved in the Wnt/β-catenin pathway to regulate HCC progression.

Conclusions: It was the first time to comprehensively discover and identify the expression, prognosis, immunotherapy, RNAs regulator, posttranscriptional modification, and molecular mechanisms of CLSPN in HCC. These novel insights have the potential to expedite the development of personalized treatment strategies and translational medicine approaches for HCC patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108260DOI Listing

Publication Analysis

Top Keywords

expression clspn
12
clspn
10
hcc
10
potential molecular
8
hepatocellular carcinoma
8
molecular mechanisms
8
mechanisms clspn
8
hcc clspn
8
expression
5
clspn demystify
4

Similar Publications

Adoptive T cell therapy, using T cell receptor-engineered T (TCR-T) cells and chimeric antigen receptor T (CAR-T) cells, is a potent immunotherapy option. Bladder cancer is a prevalent urological malignancy, particularly in cases of muscle invasion and metastasis, for which systemic therapy is crucial. Immunotherapy utilizing immune checkpoint blockade has been approved for bladder cancer treatment.

View Article and Find Full Text PDF

Analysis of miR-497/195 cluster identifies new therapeutic targets in cervical cancer.

BMC Res Notes

August 2024

Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Objective: miR-497/195, located at 17p13.1, is a highly conserved miRNA cluster whose abnormal expression is a key regulator of carcinogenesis. We performed a comprehensive analysis of the miR-497/195 cluster to determine its prognostic utility and role in cervical cancer (CC) using publicly available datasets.

View Article and Find Full Text PDF

A T-Cell-Derived 3-Gene Signature Distinguishes SARS-CoV-2 from Common Respiratory Viruses.

Viruses

June 2024

Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China.

Research on the host responses to respiratory viruses could help develop effective interventions and therapies against the current and future pandemics from the host perspective. To explore the pathogenesis that distinguishes SARS-CoV-2 infections from other respiratory viruses, we performed a multi-cohort analysis with integrated bioinformatics and machine learning. We collected 3730 blood samples from both asymptomatic and symptomatic individuals infected with SARS-CoV-2, seasonal human coronavirus (sHCoVs), influenza virus (IFV), respiratory syncytial virus (RSV), or human rhinovirus (HRV) across 15 cohorts.

View Article and Find Full Text PDF

Neurodegenerative diseases, such as Alzheimer's disease, pose a significant global health challenge with their complex etiology and elusive biomarkers. In this study, we developed the Alzheimer's Identification Tool (AITeQ) using ribonucleic acid-sequencing (RNA-seq), a machine learning (ML) model based on an optimized ensemble algorithm for the identification of Alzheimer's from RNA-seq data. Analysis of RNA-seq data from several studies identified 87 differentially expressed genes.

View Article and Find Full Text PDF

Background & Aims: CLSPN, a critical component of the S-phase checkpoint in response to DNA replication stress, has been implicated in the pathogenesis of multiple tumor types. The rising incidence of hepatocellular carcinoma (HCC) poses a significant challenge to global public health. Despite this, the specific functions of CLSPN in the development of HCC remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!