Herein, we have employed a supramolecular assembly of a cationic dye, LDS-698 and a common surfactant sodium dodecyl sulfate (SDS) as a turn-on fluorescent sensor for protamine (Pr) detection. Addition of cationic Pr to the solution of dye-surfactant complex brings negatively charged SDS molecules together through strong electrostatic interaction, assisting aggregation of SDS way before its critical micellar concentration (CMC). These aggregates encapsulate the dye molecules within their hydrophobic region, arresting non-radiative decay channels of the excited dye. Thus, the LDS-698•SDS assembly displays substantial enhancement in fluorescence intensity that follows a nice linear trend with Pr concentration, providing limit of detection (LOD) for Pr as low as 3.84(±0.11) nM in buffer, 124.4(±6.7) nM in 1% human serum and 28.3(±0.5) nM in 100% human urine. Furthermore, high selectivity, low background signal, large stokes shift, and emission in the biologically favorable deep-red region make the studied assembly a promising platform for Pr sensing. As of our knowledge it is the first ever Pr sensory platform, using a very common surfactant (SDS), which is economically affordable and very easily available in the market. This innovative approach can replace the expensive, exotic and specialized chemicals considered for the purpose and thus showcase its potential in practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2024.113839 | DOI Listing |
PLoS One
December 2024
Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, MD, United States of America.
During the SARS-CoV-2 pandemic, a need for methods to decontaminate and reuse personal protective equipment (PPE) and medical plastics became a priority. In this investigation we aimed to develop a contamination evaluation protocol for laboratory pipette tips, after decontamination. Decontamination methods tested in this study included cleaning with a common laboratory detergent (2.
View Article and Find Full Text PDFPol J Vet Sci
September 2024
Department of Companion Animals and Horses, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria.
Rhodococcus equi (R. equi) is a primary cause of pyogranulomatous pneumonia of foals between three weeks and five months of age. Early diagnosis of rhodococcal pneumonia has always been considered a preferable approach as it can lead to more successful treatment and better outcomes.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Italy.
Hypothesis: Bubbles oscillating near a free surface are common across numerous systems. Thin liquid films (TLFs) formed between an oscillating bubble and a free surface can exhibit distinct morphological features influenced by interfacial properties, evaporation, and deformation history. We hypothesize that a continuous film presence throughout oscillation results in a wimple morphology, whereas intermittent film presence leads to a dimple formation.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA.
Postsurgical adhesions are a common complication associated with surgical procedures; they not only impact the patient's well-being but also impose a financial burden due to medical expenses required for reoperative surgeries or adhesiolysis. Adhesions can range from a filmy, fibrinous, or fibrous vascular band to a cohesive attachment, and they can form in diverse anatomical locations such as the peritoneum, pericardium, endometrium, tendons, synovium, and epidural and pleural spaces. Numerous strategies have been explored to minimize the occurrence of postsurgical adhesions.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
Dissipative particle dynamics (DPD) simulations have proven to be a valuable coarse-grained simulation technique for studying complex systems such as surfactant and polymer solutions. However, the best method to use in parametrising DPD systems is not universally agreed. One common approach is to map infinite dilution activity coefficients to the DPD simulation 'beads' that represent molecular fragments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!