One-step online analysis of antibiotics in highly saline seawater by nano-based slug-flow microextraction.

J Hazard Mater

School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:

Published: May 2024

The transition to mass spectrometry (MS) in the analysis of antibiotics in the marine environment is highly desirable, particularly in the enhancement of sensitivity for high-salinity (3.5 wt%) seawater samples. However, the persistence of complex operational procedures poses substantial challenges to this transition. In this study, a rapid method for the online analysis of antibiotics in seawater samples via nano-electrospray ionization (nESI) MS based on slug-flow microextraction (SFME) has been proposed. Comparisons with other methods, complex laboratory setups for sample processing are now seamlessly integrated into a single online step, completing the entire process, including desalination and detection, SFME-nESI-MS provides faster results in less than 2 min while maintaining sensitivity comparable to that of other detection methods. Using SFME-nESI, six antibiotics in high-salinity (3.5 wt%) seawater samples have been determined in both positive and negative ion modes. The proposed method successfully detected clarithromycin, ofloxacin, and sulfadimidine in seawater within a linear range of 1-1000 ng mL and limit of detection (LOD) of 0.23, 0.06, and 0.28 ng mL, respectively. The method recovery was from 92.8% to 107.3%, and the relative standard deviation was less than 7.5%. In addition, the response intensity of SFME-nESI-treated high-salinity (3.5 wt%) samples surpassed that of untreated medium-salinity (0.35 wt%) samples by two to five orders of magnitude. This advancement provides an exceptionally simplified protocol for the online rapid, highly sensitive, and quantitative determination of antibiotics in high-salinity (3.5 wt%) seawater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.134039DOI Listing

Publication Analysis

Top Keywords

high-salinity 35 wt%
16
analysis antibiotics
12
35 wt% seawater
12
seawater samples
12
online analysis
8
slug-flow microextraction
8
antibiotics high-salinity
8
seawater
6
antibiotics
5
samples
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!