Confounding effects of seasonality and anthropogenic river regulation on suspended particulate matter-driven mercury transport to coastal seas.

J Hazard Mater

Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States.

Published: May 2024

Riverine mercury (Hg) is mainly transported to coastal areas in suspended particulate matter (SPM)-bound form, posing a potential threat to human health. Water discharge and SPM characteristics in rivers vary naturally with seasonality and can also be arbitrarily disrupted by anthropogenic regulation events, but their effects on Hg transport remain unresolved. Aiming to understand the confounding effects of seasonality and anthropogenic river regulation on Hg and SPM transport, this study selected the highly sediment-laden Yellow River as a representative conduit. Significant variations in SPM concentrations (108 - 7097 mg/L) resulted in fluctuations in total mercury (THg, 3.79 - 111 ng/L) in river water corresponding to seasonality and anthropogenic water/sediment regulation. Principal component analysis and structural equation model revealed that SPM was the essential factor controlling THg and particulate Hg (PHg) in river water. While SPM exhibited equilibrium state in the dry season, a net resuspension during the anthropogenic regulation and net deposition in the wet season demonstrated the impact of SPM dynamics on Hg distribution and transport to coastal regions. Combining water discharge, SPM, and Hg concentrations, a modified model was developed to quantify Hg flux (2256 kg), over 98% of which was in particulate phase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.133979DOI Listing

Publication Analysis

Top Keywords

seasonality anthropogenic
12
confounding effects
8
effects seasonality
8
anthropogenic river
8
river regulation
8
suspended particulate
8
transport coastal
8
water discharge
8
discharge spm
8
anthropogenic regulation
8

Similar Publications

Background: Many species are exhibiting range shifts associated with anthropogenic change. For migratory species, colonisation of new areas can require novel migratory programmes that facilitate navigation between independently-shifting seasonal ranges. Therefore, in some cases range-shifts may be limited by the capacity for novel migratory programmes to be transferred between generations, which can be genetically and socially mediated.

View Article and Find Full Text PDF

Factors influencing spatiotemporal variability of NO concentration in urban area: a GIS and remote sensing-based approach.

Environ Monit Assess

January 2025

Air Quality, Climate Change and Health (ACH) Lab, Department of Public Health and Informatics, Jahangirnagar University, 1342, Savar, Dhaka, Bangladesh.

The growing global attention on urban air quality underscores the need to understand the spatiotemporal dynamics of nitrogen dioxide (NO) and its environmental and anthropogenic factors, particularly in cities like Dhaka (Gazipur), Bangladesh, which suffers from some of the world's worst air quality. This study analysed NO concentrations in Gazipur from 2019 to 2022 using Sentinel-5P TROPOMI data on the Google Earth Engine (GEE) platform. Correlations and regression analysis were done between NO levels and various environmental factors, including land surface temperature (LST), normalized difference vegetation index (NDVI), land use and land cover (LULC), population density, road density, settlement density, and industry density.

View Article and Find Full Text PDF

Seasonal variation of microbial community and diversity in the Taiwan Strait sediments.

Environ Res

January 2025

Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.

Article Synopsis
  • Human activities and ocean currents in the Taiwan Strait show seasonal variations, but how marine microbes respond to these changes under human and climate stress is not fully understood.
  • Using 16S rRNA gene amplicon sequencing, the study analyzed sediment samples and found distinct seasonal patterns in microbial diversity, with Proteobacteria and Desulfobacterota as dominant groups.
  • Key factors like iron concentrations, heavy metals, and temperature fluctuations significantly influenced microbial community structures, while certain core microbial groups and marker species could serve as indicators for monitoring the health of the Taiwan Strait ecosystem.
View Article and Find Full Text PDF

Isotopic variability of the invasive blue crab Callinectes sapidus in the Gulf of Cadiz: Impacts and implications for coastal ecosystem management.

J Environ Manage

January 2025

Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui, 2, Puerto Real, Cadiz, 11510, Spain; Associate Research Unit "Blue Growth", Spanish National Research Council (CSIC) - Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Cadiz, Spain. Electronic address:

The variability in trophic position and carbon isotopic signatures can provide information about their dietary flexibility and its ability to adapt to changing environmental conditions. The impact of the invasive blue crab Callinectes sapidus was assessed by estimating its trophic position and isotopic niche using stable isotopes (δ³C, δ⁵N, δ³⁴S) across different invaded Atlantic coastal areas. This study, the first of its kind in the eastern Atlantic range, reveals the crab's omnivorous behavior with a wide trophic position (TP = 2-4), consistent with findings from its native range.

View Article and Find Full Text PDF

The contamination of rivers by potentially toxic elements (PTEs) is a problem of global importance. The Valles River is Ciudad Valles' (Central Mexico) main source of drinking water. During the four seasons of the year, water samples (n = 6), sediment samples (n = 6), and plants (n = 10) were taken from three study sites selected based on the presence of anthropogenic activities in the Valles River.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!