A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ratiometric fluoroprobe based on Eu-MOF@Tb for detecting tetracycline hydrochloride in freshwater fish and its application in rapid visual detection. | LitMetric

Ratiometric fluoroprobe based on Eu-MOF@Tb for detecting tetracycline hydrochloride in freshwater fish and its application in rapid visual detection.

J Hazard Mater

Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:

Published: May 2024

Tetracycline hydrochloride (TCH), a prevalent antibiotic in aquaculture for treating bacterial infections, poses challenges for on-site detection. This study employed the reversed-phase microemulsion method to synthesize a uniform nano metal-organic framework (MOF) material, europium-benzene-p-dicarboxylic acid (Eu-BDC), doped with Tb to form a dual-emission fluorescence probe. By leveraging the combined a-photoinduced electron-transfer (a-PET) and inner filter effect (IFE) mechanisms, high-sensitivity TCH detection in Carassius auratus and Ruditapes philippinarum was achieved. The detection range for TCH is 0.380-75 μM, with a low limit of detection (LOD) at 0.115 μM. Upon TCH binding, Eu-BDC fluorescence rapidly decreased, while Tb fluorescence remained constant, establishing a ratiometric fluorescence change. Investigation into the TCH quenching mechanism on Eu-BDC was conducted using time-dependent density functional theory (TD-DFT) calculations and fluorescence quenching kinetic equations, suggesting a mixed quenching mechanism. Furthermore, a novel photoelectric conversion fluorescence detection device (FL-2) was developed and evaluated in conjunction with high-performance liquid chromatography-diode-array detection (HPLC-DAD). This is the first dedicated fluorescence device for TCH detection, showcasing superior photoelectric conversion performance and stability that reduces experimental errors associated with smartphone photography methods, presenting a promising avenue for on-site rapid TCH detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.134045DOI Listing

Publication Analysis

Top Keywords

tch detection
12
detection
9
tetracycline hydrochloride
8
quenching mechanism
8
photoelectric conversion
8
tch
7
fluorescence
7
ratiometric fluoroprobe
4
fluoroprobe based
4
based eu-mof@tb
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!