Ecofriendly fabrication of anti-oil-fouling materials is of interest. Surfaces with underwater superoleophobicity have been fabricated which exhibit limited mechanical durability and water resistance. In this study, we report on a bioinspired bilayer design of a transparent anti-oil-fouling coating. Seaweed surfaces show anti-oil-fouling in the sea due to its high surface hydration ability. Mussels can adhere tightly onto a surface with good stability in the sea by virtue of its levodopa-containing secretions. The surface layer was fabricated using a crosslinked combination of carboxymethyl cellulose (CMC) and sodium alginate (AlgS) inspired by seaweed, with the addition of calcium ions. Polydopamine (PDA), a derivative of levodopa, was used as the underlayer to enhance bonding strength and water resistance. Oil that adhered to the coated surface was spontaneously detached upon immersion in water. The mechanism underlying this anti-oil-fouling effect was elucidated using Gibbs free energy theory. The coating exhibited mechanical durability and water resistance. The coating is transparent and preserves the original color of the substrate. The coated glass showed stable anti-fogging and anti-frost performance. These coatings hold promise for a wide range of anti-oil-fouling applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.02.206DOI Listing

Publication Analysis

Top Keywords

mechanical durability
12
water resistance
12
durability water
8
anti-oil-fouling
6
seaweed-inspired underwater
4
underwater anti-oil-fouling
4
anti-oil-fouling anti-fogging
4
coating
4
anti-fogging coating
4
coating mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!