Background And Objective: Detailed finite element models based on medical images (μ-CT) are commonly used to analyze the mechanical behavior of bone at microscale. In order to simulate the tissue failure onset, isotropic failure criteria of lamellar tissue are often used, despite its non-isotropic and heterogeneous nature. The main goal of the present work is to estimate the in-plane ultimate stress of lamellar bone, considering the influence of mineral content and the porosity due to the osteocyte lacunae concentration.
Methods: To this aim, a representative volume cell of lamellar tissue is modeled numerically, including: (1) non-isotropic elastic properties of tissue as a function of the bone mineral density and (2) explicit modeling of the osteocyte lacunae, considering the range of porosity content, size and orientation of ellipsoid-shaped lacunae. Firstly, the element size for the finite element models have been defined from a preliminary convergence analysis. Bounds on the ultimate stress of non-porous lamellar tissue are estimated for two values of bone mineral density, considering the results of tensile and compressive tests of wet osteons from the literature. Subsequently, the ultimate stress of lamellar tissue considering several values of micro-porosity is addressed.
Results: Results obtained in this work show that the strength of lamellar bone decreases exponentially with the increase of lacunae porosity concentration. Ultimate stress of non-porous tissue (p=0%) increases with high mineral content, reaching a value of S¯=355.40±39.80 MPa for compression in the transversal direction of the fiber bundles, being BMD=1.246g/cm. The mean value for the longitudinal to transverse strength ratio evaluated for porosity p=0%,1% and 5% and a mineral content BMD=1.2g/cm, is 2.47:1 for tension and 1.55:1 for compression. These values are in agreement with literature.
Conclusions: Osteocyte lacunae act as stress concentrators, acting as potential stimulus for the bone regeneration process. A novel micromechanical model for the in-plane ultimate stress of lamellar tissue as a function of mineral content and lacunae concentration is presented. Additional considerations about the intralamellar shear stress evolution are also given.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2024.108120 | DOI Listing |
Animal Model Exp Med
January 2025
Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh.
Polyphenols, a diverse group of naturally occurring compounds found in plants, have garnered significant attention for their potential therapeutic properties in treating neurodegenerative diseases (NDs). The Wnt/β-catenin (WβC) signaling pathway, a crucial player in neurogenesis, neuronal survival, and synaptic plasticity, is involved in several cellular mechanisms related to NDs. Dysregulation of this pathway is a hallmark in the development of various NDs.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg 85764, Germany.
Type 2 diabetes (T2D) complications pose a significant global health challenge. Omics technologies have been employed to investigate these complications and identify the biological pathways involved. In this review, we focus on four major T2D complications: diabetic kidney disease, diabetic retinopathy, diabetic neuropathy, and cardiovascular complications.
View Article and Find Full Text PDFPharmacol Res Perspect
February 2025
New Drug Development Center, Daegu, Korea.
Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India. Electronic address:
Lead (Pb) is an environmental toxin ubiquitously present in the human environment due to anthropogenic activities and industrialization. Lead can enter the human body through various sources and pathways, such as inhalation, ingestion and dermal contact, leading to detrimental health effects. The majority of lead that enters the body is removed by urine or feces; however, under chronic exposure conditions, lead is not efficient, as lead is absorbed and transferred to numerous organs, such as the brain, liver, kidney, muscles, and heart, and it is ultimately stored in mineralizing tissues such as bones and teeth.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University 87 Dingjiaqiao, Nanjing, P.R. China.
Autophagic flux blockade and excessive oxidative stress play important roles in the pathogenesis of diabetic vascular calcification (VC). Transcription factor EB (TFEB) is an important regulator of many autophagy-lysosomal related components, which is mainly involved in promoting autophagy process in cells. Nuclear factor erythroid-2 related factor 2 (Nrf2) antioxidant system is considered as one of the key pathways in response to intracellular oxidative stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!