The purpose of this study was to validate an electronic portal imaging device (EPID) based 3-dimensional (3D) dosimetry system for the commissioning of volumetric modulated arc therapy (VMAT) delivery for flattening filter (FF) and flattening filter free (FFF) modalities based on test suites developed according to American Association of Physicists in Medicine Task Group 119 (AAPM TG 119) and pre-treatment patient specific quality assurance (PSQA).With ionisation chamber, multiple-point measurement in various planes becomes extremely difficult and time-consuming, necessitating repeated exposure of the plan. The average agreement between measured and planned doses for TG plans is recommended to be within 3%, and both the ionisation chamber and PerFRACTION™ measurement were well within this prescribed limit. Both point dose differences with the planned dose and gamma passing rates are comparable with TG reported multi-institution results. From our study, we found that no significant differences were found between FF and FFF beams for measurements using PerFRACTION™ and ion chamber. Overall, PerFRACTION™ produces acceptable results to be used for commissioning and validating VMAT and for performing PSQA. The findings support the feasibility of integrating PerFRACTION™ into routine quality assurance procedures for VMAT delivery. Further multi-institutional studies are recommended to establish global baseline values and enhance the understanding of PerFRACTION's capabilities in diverse clinical settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12194-024-00792-z | DOI Listing |
J Appl Clin Med Phys
January 2025
Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois, USA.
Background: Various methods exist to correct for intrafraction motion (IFM) of the prostate during radiotherapy. We sought to characterize setup corrections in our practice informed by the TrueBeam Advanced imaging package, and analyze factors associated with IFM.
Methods: 132 men received radiation therapy for prostate cancer with a volumetric modulated arc therapy technique.
Med Dosim
January 2025
Department of Radiation Oncology, Peking University First Hospital, Beijing, China. Electronic address:
This study presents a patient with a PET-CT detected residual lacrimal sac tumor who was treated with intensity modulated proton therapy (IMPT) and concurrent chemotherapy. The patient a 49-year-old male diagnosed with squamous cell carcinoma of the left lacrimal sac had under-went endoscopic surgery. Postoperative PET-CT implied tumor residual in the left lacrimal sac.
View Article and Find Full Text PDFPhys Med
January 2025
IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, 20089 Rozzano, Milan, Italy.
Purpose: Total marrow (lymph-node) irradiation (TMI/TMLI) is a radiotherapy technique irradiating the whole body of a patient. The limited couch travel range in modern linacs (130-150 cm) forces to split the TMI/TMLI delivery into two plans with opposite orientation. A dedicated field junction is necessary to achieve satisfactory target coverage in the overlapping region of the two plans.
View Article and Find Full Text PDFACS EST Air
January 2025
Lyles School of Civil & Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
Commercial HVAC systems intended to mitigate indoor air pollution are operated based on standards that exclude aerosols with smaller diameters, such as ultrafine particles (UFPs, D ≤ 100 nm), which dominate a large proportion of indoor and outdoor number-based particle size distributions. UFPs generated from occupant activities or infiltrating from the outdoors can be recirculated and accumulate indoors when they are not successfully filtered by an air handling unit. Monitoring UFPs in real occupied environments is vital to understanding these source and mitigation dynamics, but capturing their rapid transience across multiple locations can be challenging due to high-cost instrumentation.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Optical resolution photoacoustic imaging of uneven samples without z-scanning is transformative for the fast analysis and diagnosis of diseases. However, current approaches to elongate the depth of field (DOF) typically imply cumbersome postprocessing procedures, bulky optical element ensembles, or substantial excitation beam side lobes. Metasurface technology allows for the phase modulation of light and the miniaturization of imaging systems to wavelength-size thickness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!