Optimization and mechanism of the novel eco-friendly additives for solidification and stabilization of dredged sediment.

Environ Sci Pollut Res Int

School of Civil Engineering, Southeast University, Dong Nan Da Xue Road 2, Nanjing, 211189, People's Republic of China.

Published: April 2024

AI Article Synopsis

  • * The optimal mixture ratio for solidification was determined to be 14.86 g/kg cement, 5.85 g/kg bentonite, and 9.31 g/kg citrus peel powder, resulting in a strong unconfined compressive strength of 3144.84 kPa.
  • * This approach significantly reduced the leaching of heavy metals by over 50%, making it a sustainable solution that meets environmental standards for green planting.

Article Abstract

Solidification/stabilization technology is commonly used in the rehabilitation of dredged sediment due to its cost-effectiveness. However, traditional solidification/stabilization technology relies on cement, which increases the risk of soil alkalization and leads to increased CO emissions during cement production. To address this issue, this study proposed an innovative approach by incorporating bentonite and citrus peel powder as additives in the solidifying agent, with the aim of reducing cement usage in the dredged sediment solidification process. The research results showed that there is a significant interaction among cement, bentonite, and citrus peel powder. After response surface methodology (RSM) optimization, the optimal ratio of the cementitious mixture was determined to be 14.86 g/kg for cement, 5.85 g/kg for bentonite, and 9.31 g/kg for citrus peel powder. The unconfined compressive strength (UCS) of the solidified sediments reached 3144.84 kPa. The reaction products of the solidification materials, when mixed with sediment, facilitated adsorption, gelation, and network structure connection. Simultaneously, the leaching concentration of heavy metals was significantly decreased with five heavy metals (Zn, As, Cd, Hg, and Pb) leaching concentrations decreasing by more than 50%, which met the prescribed thresholds for green planting. This study demonstrated the ecological benefits of employing bentonite and citrus peel powder in the solidification process of dredged sediment, providing an effective solution for sediment solidification.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-32865-2DOI Listing

Publication Analysis

Top Keywords

dredged sediment
16
citrus peel
16
peel powder
16
bentonite citrus
12
solidification/stabilization technology
8
sediment solidification
8
solidification process
8
heavy metals
8
sediment
6
solidification
5

Similar Publications

Alterations caused by human activities in the environment, such as dredging, modify the physicochemical conditions and affect the habitat. Maintenance dredging that allows large vessels access to inland ports is a recurring disruptive action. The study aimed to evaluate, during a maintenance dredging operation in a port area of the Paraná River, the modifications in the structure of the river, the presence of contaminants and bacterial organisms.

View Article and Find Full Text PDF

Dredging in estuarine systems significantly impacts phytoplankton communities, with suspended particulate matter (SPM) and dissolved aluminum (Al) serving as indicators of disturbance intensity. This study assessed the effects of dredging in the São Marcos Estuarine Complex (SMEC), Brazil, over three distinct events (2015, 2017, 2020), involving varying sediment volumes and climatic influences. Prolonged dredging operations and increased sediment volumes led to a pronounced 43.

View Article and Find Full Text PDF

Several methods can be used to mitigate coastal erosion, and one of the leading solutions is known as beach nourishment (BN), which involves using dredged material for nourishment, adding sand to extend an eroding beach. Although it has many advantages, the environmental impacts of BN remain poorly understood, especially on plastic pollution, which had not been investigated until this study. We aimed to compare the abundance and distribution of microplastics (MPs) found in intertidal sediments and specimens of the bivalve mollusks Crassostrea brasiliana, Mytella strigata, Perna perna, and Tivela mactroides, collected in two beaches of Vitoria, Southeast of Brazil (da Costa et al.

View Article and Find Full Text PDF

From both economic and environmental points of view, the reuse of dredged sediments in the direct onsite casting of concrete represents a promising method for replacing sand. The aim of this study was to develop a cementitious material that (i) reuses the thin particles of sediments; (ii) has a low density due to the incorporation of air foam in the material; and (iii) achieves a minimum mechanical strength of 0.5 MPa for embankment applications.

View Article and Find Full Text PDF

Potential of water sediments in construction materials: Current approaches and critical consideration of future challenges.

Heliyon

January 2025

Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29, Prague 6, Czech Republic.

Human activities result in sediment accumulation, so the reservoirs gradually lose their functionality, impacting their ability to manage large flood inflows, supply water, and generate hydroelectric power. Therefore, periodic removal of sediments from water reservoirs is essential to maintain functionality. Notwithstanding, the management of dredged sediments is a multifaceted process that involves careful consideration of environmental, regulatory, and economic factors to ensure their responsibility and sustainable handling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!