Addressing the challenges in managing ischemic tissue repair and remodelling remains a prominent clinical concern. Current research is heavily concentrated on identifying innovative cell-based therapies with the potential to enhance revascularization in patients affected by these diseases. We have previously developed and validated a manufacturing process for human umbilical cord mesenchymal stromal cells (UC-MSCs)-based cell therapy medicinal product, according to Good Manufacturing Practices. In this study, we demonstrate that these UC-MSCs enhance the proliferation and migration of endothelial cells and the formation of capillary structures. Moreover, UC-MSCs and endothelial cells interact, allowing UC-MSCs to acquire a perivascular cell phenotype and consequently provide direct support to the newly formed vascular network. This characterization of the proangiogenic properties of this UC-MSCs based-cell therapy medicinal product is an essential step for its therapeutic assessment in the clinical context of vascular regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12015-024-10712-8DOI Listing

Publication Analysis

Top Keywords

mesenchymal stromal
8
human umbilical
8
umbilical cord
8
therapy medicinal
8
medicinal product
8
endothelial cells
8
understanding angiogenic
4
angiogenic characteristics
4
characteristics clinical-grade
4
clinical-grade mesenchymal
4

Similar Publications

Mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) are pivotal for the curative effects of mesenchymal stromal cells, but their translation into clinical products is hindered by the technical challenges of scaled production and purification. Ultrafiltration, a pressure-driven membrane separation method, is well known as an efficient, scalable, and cost-effective approach for bioseparation. However, there has been little study so far that comprehensively evaluates the potential application of ultrafiltration for scaled sEV isolation and purification.

View Article and Find Full Text PDF

Periodontal disease is a highly prevalent disease worldwide that seriously affects people's oral health, including gingivitis and periodontitis. Although the current treatment of periodontal disease can achieve good control of inflammation, it is difficult to regenerate the periodontal supporting tissues to achieve a satisfactory therapeutic effect. In recent years, due to the good tissue regeneration ability, the research on Mesenchymal stromal/stem cells (MSCs) and MSC-derived exosomes has been gradually deepened, especially its ability to interact with the microenvironment of the body in the complex immunoregulatory network, which has led to many new perspectives on the therapeutic strategies for many diseases.

View Article and Find Full Text PDF

Thyroid cancer progression from curable well-differentiated thyroid carcinoma to highly lethal anaplastic thyroid carcinoma is distinguished by tumor cell de-differentiation and recruitment of a robust stromal infiltrate. Combining an integrated thyroid cancer single-cell sequencing atlas with spatial transcriptomics and bulk RNA-sequencing, we define stromal cell subpopulations and tumor-stromal cross-talk occurring across the histologic and mutational spectrum of thyroid cancer. We identify distinct inflammatory and myofibroblastic cancer-associated fibroblast (iCAF and myCAF) populations and perivascular-like populations.

View Article and Find Full Text PDF

Comparative effects of various extracellular vesicle subpopulations derived from clonal mesenchymal stromal cells on cultured fibroblasts in wound healing-related process.

Int J Biochem Cell Biol

January 2025

Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Electronic address:

Introduction: Non-healing wounds pose significant challenges and require effective therapeutic interventions. Extracellular vesicles (EVs) have emerged as promising cell-free therapeutic agents in tissue regeneration. However, the functional differences between different subpopulations of EVs in wound healing remain understudied.

View Article and Find Full Text PDF

Cell-Based Therapy for Cerebral Palsy: A Puzzle in Progress.

Cell J

January 2025

Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Email:

Cell-based therapy has shown promising outcomes in the treatment of cerebral palsy (CP). However, there is no consensus on a standard therapeutic protocol regarding the source of cells, optimal cell dose, timing and frequency of cell injections, route of administration, or the use of combination therapy. This lack of consensus necessitates a comprehensive investigation to clarify these crucial yet undefined factors in cell-based therapy for CP patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!