Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We performed a comparative assessment of the immunohistochemical distribution of markers of mitochondrial fission (Drp-1), mitochondrial fusion (Mfn-2), and mitochondrial biogenesis (PGC-1α) in pyramidal neurons of different zones of the hippocampus in mice with intrahippocampal administration of β-amyloid peptide 25-35. The most pronounced changes in the dynamics associated with a decrease in the amount of the fission marker and an increase in the amount of the fusion marker were observed in the CA3 field on day 38 after peptide administration. In the CA1 field, a significant decrease in the marker of mitochondrial biogenesis PGC-1α was found on day 38, which can indicate a decrease in the intensity of mitochondrial biogenesis. Early mitochondrial changes can play an important role in the pathogenesis of all types of memory impairment in Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10517-024-06060-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!