Objective: This study aims to comprehensively analyze the clinical characteristics and identify the differentially expressed genes associated with drug-resistant epilepsy (DRE) in patients with focal cortical dysplasia (FCD).
Methods: A retrospective investigation was conducted from July 2019 to June 2022, involving 40 pediatric cases of DRE linked to FCD. Subsequent follow-ups were done to assess post-surgical outcomes. Transcriptomic sequencing and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to examine differential gene expression between the FCD and control groups.
Results: Among the 40 patients included in the study, focal to bilateral tonic-clonic seizures (13/40, 32.50%) and epileptic spasms (9/40, 22.50%) were the predominant seizure types. Magnetic resonance imaging (MRI) showed frequent involvement of the frontal (22/40, 55%) and temporal lobes (12/40, 30%). In cases with negative MRI results (13/13, 100%), positron emission tomography/computed tomography (PET-CT) scans revealed hypometabolic lesions. Fused MRI/PET-CT images demonstrated lesion reduction in 40.74% (11/27) of cases compared with PET-CT alone, while 59.26% (16/27) yielded results consistent with PET-CT findings. FCD type II was identified in 26 cases, and FCD type I in 13 cases. At the last follow-up, 38 patients were prescribed an average of 1.27 ± 1.05 anti-seizure medications (ASMs), with two patients discontinuing treatment. After a postoperative follow-up period of 23.50 months, 75% (30/40) of patients achieved Engel class I outcome. Transcriptomic sequencing and qRT-PCR analysis identified several genes primarily associated with cilia, including CFAP47, CFAP126, JHY, RSPH4A, and SPAG1.
Significance: This study highlights focal to bilateral tonic-clonic seizures as the most common seizure type in patients with DRE due to FCD. Surgical intervention primarily targeted lesions in the frontal and temporal lobes. Patients with FCD-related DRE showed a promising prognosis for seizure control post-surgery. The identified genes, including CFAP47, CFAP126, JHY, RSPH4A, and SPAG1, could serve as potential biomarkers for FCD.
Plain Language Summary: This study aimed to comprehensively evaluate the clinical data of individuals affected by focal cortical dysplasia and analyze transcriptomic data from brain tissues. We found that focal to bilateral tonic-clonic seizures were the most prevalent seizure type in patients with drug-resistant epilepsy. In cases treated surgically, the frontal and temporal lobes were the primary sites of the lesions. Moreover, patients with focal cortical dysplasia-induced drug-resistant epilepsy exhibited a favorable prognosis for seizure control after surgery. CFAP47, CFAP126, JHY, RSPH4A, and SPAG1 have emerged as potential pathogenic genes for the development of focal cortical dysplasia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145614 | PMC |
http://dx.doi.org/10.1002/epi4.12928 | DOI Listing |
Prog Neurobiol
January 2025
Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland. Electronic address:
The brain faces the challenging task of preserving a consistent portrayal of the external world in the face of disruptive sensory inputs. What alterations occur in sensory representation amidst noise, and how does brain activity adapt to it? Although it has previously been shown that background white noise (WN) decreases responses to salient sounds, a mechanistic understanding of the brain processes responsible for such changes is lacking. We investigated the effect of background WN on neuronal spiking activity, membrane potential, and network oscillations in the mouse central auditory system.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
Institute of Brain Science, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan; Brain Research Center, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan; Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. Electronic address:
While the etiology of schizophrenia (SZ) remains elusive, its diverse phenotypes suggest the involvement of distinct functional cortical areas, and the heritability of SZ implies the underlying genetic factors. This study aimed to integrate imaging and molecular analyses to elucidate the genetic underpinnings of SZ. We investigated the local cortical structural pattern changes in Brodmann areas (BAs) by calculating the cortical structural pattern index (SPI) using magnetic resonance imaging analysis from 194 individuals with SZ and 330 controls.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
Resting state networks (RSNs) of the brain are characterized as correlated spontaneous time-varying fluctuations in the absence of goal-directed tasks. These networks can be local or large-scale spanning the brain. The study of the spatiotemporal properties of such networks has helped understand the brain's fundamental functional organization under healthy and diseased states.
View Article and Find Full Text PDFBiomedicines
December 2024
Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland.
The cerebral microvasculature forms a dense network of interconnected blood vessels where flow is modulated partly by astrocytes. Increased neuronal activity stimulates astrocytes to release vasoactive substances at the endfeet, altering the diameters of connected vessels. Our study simulated the coupling between blood flow variations and vessel diameter changes driven by astrocytic activity in the rat somatosensory cortex.
View Article and Find Full Text PDFCommun Biol
January 2025
Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, PSL University, Paris, France.
Astrocytes form extensive networks with diverse calcium activity, yet the organization and connectivity of these networks across brain regions remain largely unknown. To address this, we developed AstroNet, a data-driven algorithm that uses two-photon calcium imaging to map temporal correlations in astrocyte activation. By organizing individual astrocyte activation events chronologically, our method reconstructs functional networks and extracts local astrocyte correlations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!