Bispecific antibodies (BsAbs) represent an emerging class of biologics that can recognize two different antigens or epitopes. T-cell engagers (TcEs) bind two targets in trans on the cell surface of the effector and target cell to induce proximal immune effects, opening exciting windows for immunotherapies. To date, the engineering of BsAbs has been mainly focused on tuning the molecular weight and valency. However, the effects of spatial factors on the biological functions of BsAbs have been less explored due to the lack of biochemical methods to precisely manipulate protein geometry. Here, we studied the geometric effects of the TcEs. First, by genetically inserting rigidly designed ankyrin repeat proteins into TcEs, we revealed that the efficacy progressively decreased as the spacer distance of the two binding domains increased. Then, we constructed 26 pairs of TcEs with the same size but varying orientations using click chemistry-mediated conjugation at different mutation sites. We found that linear ligation sites play a minor role in modulating cell-killing efficacy. Next, we rendered the TcEs' advanced topology by cyclization chemistry using the SpyTag/SpyCatcher pair or sortase ligation approaches. Cyclized TcEs were generally more potent than their linear counterparts. Particularly, sortase A cyclized TcEs, bearing a minimal tagging motif, exhibited better cell-killing efficacy in vitro and improved stability both in vitro and in vivo compared to the linear TcE. This work combines modern bioconjugation chemistry and protein engineering tools for antibody engineering, shedding light on the elusive spatial factors of BsAbs functionality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.3c00728 | DOI Listing |
Viruses
December 2024
The Sheba Pandemic Preparedness Research Institute (SPRI), Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel.
Background/objectives: Millions of individuals worldwide continue to experience symptoms following SARS-CoV-2 infection. This study aimed to assess the prevalence and phenotype of multi-system symptoms attributed to Long COVID-including fatigue, pain, cognitive-emotional disturbances, headache, cardiopulmonary issues, and alterations in taste and smell-that have persisted for at least two years after acute infection, which we define as "persistent Long COVID". Additionally, the study aimed to identify clinical features and blood biomarkers associated with persistent Long COVID symptoms.
View Article and Find Full Text PDFViruses
December 2024
Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China.
The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a recombinant virus-like particle (VLP) vaccine based on the Newcastle Disease Virus (NDV) platform, displaying a stabilized prefusion form of the SARS-CoV-2 spike (S) protein. This engineered S protein includes two proline substitutions (K986P, V987P) and a mutation at the cleavage site (RRAR to QQAQ), aimed at enhancing both its stability and immunogenicity.
View Article and Find Full Text PDFViruses
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Center for Swine Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
Porcine circovirus 3 (PCV3) is a small non-enveloped circovirus associated with porcine dermatitis and nephropathy syndrome (PDNS). It has occurred worldwide and poses a serious threat to the pig industry. However, there is no commercially available vaccine.
View Article and Find Full Text PDFViruses
November 2024
Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
Background: Recombinant avian influenza subunit vaccines often require adjuvants to enhance immune responses. This study aims to evaluate the immune-enhancing potential of seven combination adjuvants in specific pathogen-free (SPF) chickens.
Methods: SPF chickens were vaccinated with combinations of ISA78VG and adjuvants, including Quil-A, CpG, and monophosphoryl lipid A (MPLA).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!