A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interfacial Engineering for Oriented Crystal Growth toward Dendrite-Free Zn Anode for Aqueous Zinc Metal Battery. | LitMetric

Interfacial Engineering for Oriented Crystal Growth toward Dendrite-Free Zn Anode for Aqueous Zinc Metal Battery.

Angew Chem Int Ed Engl

Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.

Published: May 2024

Zn deposition with a surface-preferred (002) crystal plane has attracted extensive attention due to its inhibited dendrite growth and side reactions. However, the nucleation and growth of the Zn(002) crystal plane are closely related to the interfacial properties. Herein, oriented growth of Zn(002) crystal plane is realized on Ag-modified surface that is directly visualized by in situ atomic force microscopy. A solid solution HCP-Zn (~1.10 at. % solubility of Ag, 30 °C) is formed on the Ag coated Zn foil (Zn@Ag) and possesses the same crystal structure as Zn to reduce its nucleation barrier caused by their lattice mismatch. It merits oriented Zn deposition and corrosion-resistant surface, and presents long cycling stability in symmetric cells and full cells coupled with VO cathode. This work provides insights into interfacial regulation of Zn anodes for high-performance aqueous zinc metal batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202402342DOI Listing

Publication Analysis

Top Keywords

crystal plane
12
aqueous zinc
8
zinc metal
8
growth zn002
8
zn002 crystal
8
crystal
5
interfacial engineering
4
engineering oriented
4
oriented crystal
4
growth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!