Diluents have been extensively employed to overcome the disadvantages of high viscosity and sluggish kinetics of high-concentration electrolytes, but generally do not change the pristine solvation structure. Herein, a weakly coordinating diluent, hexafluoroisopropyl methyl ether (HFME), is applied to regulate the coordination of Na with diglyme and anion and form a diluent-participated solvate. This unique solvation structure promotes the accelerated decomposition of anions and diluents, with the construction of robust inorganic-rich electrode-electrolyte interphases. In addition, the introduction of HFME reduces the desolvation energy of Na, improves ionic conductivity, strengthens the antioxidant, and enhances the safety of the electrolyte. As a result, the assembled Na||Na symmetric cell achieves a stable cycle of over 1800 h. The cell of Na||P'2-NaMnO delivers a high capacity retention of 87.3 % with a high average Coulombic efficiency of 99.7 % after 350 cycles. This work provides valuable insights into solvation chemistry for advanced electrolyte engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202400406 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!