Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Triadic closure, the formation of a connection between two nodes in a network sharing a common neighbor, is considered a fundamental mechanism determining the clustered nature of many real-world topologies. In this work we define a static triadic closure (STC) model for clustered networks, whereby starting from an arbitrary fixed backbone network, each triad is closed independently with a given probability. Assuming a locally treelike backbone we derive exact expressions for the expected number of various small, loopy motifs (triangles, 4-loops, diamonds, and 4-cliques) as a function of moments of the backbone degree distribution. In this way we determine how transitivity and its suitably defined generalizations for higher-order motifs depend on the heterogeneity of the original network, revealing the existence of transitions due to the interplay between topologically inequivalent triads in the network. Furthermore, under reasonable assumptions for the moments of the backbone network, we establish approximate relationships between motif densities, which we test in a large dataset of real-world networks. We find a good agreement, indicating that STC is a realistic mechanism for the generation of clustered networks, while remaining simple enough to be amenable to analytical treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.109.024306 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!