Collective actuation describes the spontaneous synchronized oscillations taking place in active solids when the elasto-active feedback, which generically couples the reorientation of the active forces and the elastic stress, is large enough. In the absence of noise, collective actuation takes the form of a strong condensation of the dynamics on a specific pair of modes and their generalized harmonics. Here we report experiments conducted with centimetric active elastic structures, where collective oscillation takes place along the single lowest energy mode of the system, gapped from the other modes because of the system's geometry. Combining the numerical and theoretical analysis of an agent-based model, we demonstrate that this form of collective actuation is noise-induced. The effect of the noise is first analyzed in a single-particle toy model that reveals the interplay between the noise and the specific structure of the phase space. We then show that in the continuous limit, any finite amount of noise turns this new form of transition to collective actuation into a bona fide supercritical Hopf bifurcation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.109.024606 | DOI Listing |
Nat Commun
January 2025
Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation.
View Article and Find Full Text PDFNat Commun
January 2025
Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford, Department of Radiology, School of Medicine, Stanford University, California, CA, USA.
Particle manipulation plays a pivotal role in scientific and technological domains such as materials science, physics, and the life sciences. Here, we present a dynamically reconfigurable acoustofluidic metasurface that enables precise trapping and positioning of microscale particles in fluidic environments. By harnessing acoustic-structure interaction in a passive membrane resonator array, we generate localized standing acoustic waves that can be reconfigured in real-time.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic.
Bacterial biofilms are complex multicellular communities that adhere firmly to solid surfaces. They are widely recognized as major threats to human health, contributing to issues such as persistent infections on medical implants and severe contamination in drinking water systems. As a potential treatment for biofilms, this work proposes two strategies: (i) light-driven ZnFeO (ZFO)/Pt microrobots for photodegradation of biofilms and (ii) magnetically driven ZFO microrobots for mechanical removal of biofilms from surfaces.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, P. R. China.
Rapid thrombolysis is very important to reduce complications caused by vascular blockage. A promising approach for improving thrombolysis efficiency is utilizing the permanent magnetically actuated locomotion of nanorobots. However, the thrombolytic drug transportation efficiency is challenged by in-plane rotating locomotion and the insufficient drug penetration limits further improvement of thrombolysis.
View Article and Find Full Text PDFCommun Chem
October 2024
MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!