Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
By considering a simple model for self-propelled particle interaction, we show that anti-aligning forces induce a finite wavelength instability. Consequently, the system exhibits pattern formation. The formed pattern involves, let us say, a choreographic movement of the active entities. At the level of particle density, the system oscillates between a stripe pattern and a hexagonal one. The underlying dynamics of these density oscillations consists of two counterpropagating and purely hexagonal traveling waves. They are assembling and disassembling a global hexagonal structure and a striped lineup of particles. This self-assembling process becomes quite erratic for long-time simulations, seeming aperiodic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.109.024602 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!