Endothelial β-catenin upregulation and Y142 phosphorylation drive diabetic angiogenesis via upregulating KDR/HDAC9.

Cell Commun Signal

Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.

Published: March 2024

Background: Diabetic angiogenesis is closely associated with disabilities and death caused by diabetic microvascular complications. Advanced glycation end products (AGEs) are abnormally accumulated in diabetic patients and are a key pathogenic factor for diabetic angiogenesis. The present study focuses on understanding the mechanisms underlying diabetic angiogenesis and identifying therapeutic targets based on these mechanisms.

Methods: In this study, AGE-induced angiogenesis serves as a model to investigate the mechanisms underlying diabetic angiogensis. Mouse aortic rings, matrigel plugs, and HUVECs or 293T cells were employed as research objects to explore this pathological process by using transcriptomics, gene promoter reporter assays, virtual screening and so on.

Results: Here, we found that AGEs activated Wnt/β-catenin signaling pathway and enhanced the β-catenin protein level by affecting the expression of β-catenin degradation-related genes, such as FZDs (Frizzled receptors), LRPs (LDL Receptor Related Proteins), and AXIN1. AGEs could also mediate β-catenin Y142 phosphorylation through VEGFR1 isoform5. These dual effects of AGEs elevated the nuclear translocation of β-catenin and sequentially induced the expression of KDR (Kinase Insert Domain Receptor) and HDAC9 (Histone Deacetylase 9) by POU5F1 and NANOG, respectively, thus mediating angiogenesis. Finally, through virtual screening, Bioymifi, an inhibitor that blocks VEGFR1 isoform5-β-catenin complex interaction and alleviates AGE-induced angiogenesis, was identified.

Conclusion: Collectively, this study offers insight into the pathophysiological functions of β-catenin in diabetic angiogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10941375PMC
http://dx.doi.org/10.1186/s12964-024-01566-1DOI Listing

Publication Analysis

Top Keywords

diabetic angiogenesis
20
y142 phosphorylation
8
diabetic
8
angiogenesis
8
mechanisms underlying
8
underlying diabetic
8
age-induced angiogenesis
8
virtual screening
8
β-catenin
5
endothelial β-catenin
4

Similar Publications

The Complex Role of Matrix Metalloproteinase-2 (MMP-2) in Health and Disease.

Int J Mol Sci

December 2024

Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.

Matrix metalloproteinase-2 (MMP-2), a zinc-dependent enzyme, plays a critical role in the degradation and remodeling of the extracellular matrix (ECM). As a member of the gelatinase subgroup of matrix metalloproteinases, MMP-2 is involved in a variety of physiological processes, including tissue repair, wound healing, angiogenesis, and embryogenesis. It is primarily responsible for the degradation of type IV and V collagen, fibronectin, laminin, and elastin, which are essential components of the ECM.

View Article and Find Full Text PDF

Therapeutic Effects of Taurine and Histidine Supplementation in Retinal Diseases.

Life (Basel)

November 2024

Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Amino acids are basic building blocks of structural proteins and enzymes. They also act as signaling molecules and as fuel. They are characterized as essential if sufficient quantities must be supplied exogenously or as non-essential if they can be endogenously synthesized.

View Article and Find Full Text PDF

Introduction: Mesenchymal stem cells (MSCs) have been introduced as a promising treatment for diabetic wounds. The effects of stem cell therapy are thought to be caused by bioactive molecules secreted by stem cells. Stem cell-based gene therapies can target bioactive molecules.

View Article and Find Full Text PDF

Peptide Lv and Angiogenesis: A Newly Discovered Angiogenic Peptide.

Biomedicines

December 2024

Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.

Peptide Lv is a small endogenous secretory peptide with ~40 amino acids and is highly conserved among certain several species. While it was first discovered that it augments L-type voltage-gated calcium channels (LTCCs) in neurons, thus it was named peptide "Lv", it can bind to vascular endothelial growth factor receptor 2 (VEGFR2) and has VEGF-like activities, including eliciting vasodilation and promoting angiogenesis. Not only does peptide Lv augment LTCCs in neurons and cardiomyocytes, but it also promotes the expression of intermediate-conductance K channels (K3.

View Article and Find Full Text PDF

Erectile dysfunction (ED) is a pathophysiological condition in which the patients cannot achieve an erection during sexual activity, and it is often overlooked yet prevalent among diabetic men, globally affecting approximately 35-75% of diabetic individuals. The precise mechanisms through which diabetes contributes to ED remain elusive, but the existing literature suggests the potential involvement of nerve and vascular damage that affects the penile supply. In the present review, we reanalyze the existing human single-cell transcriptomic data from patients having diabetes mellitus-associated ED with normal erections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!