Collagen nanoparticles (collagen-NPs) are promising biological polymer nanoparticles due to their exceptional biodegradability and biocompatibility. Collagen-NPs were bio-fabricated from pure marine collagen using the cell-free supernatant of a newly isolated strain, Streptomyces sp. strain NEAA-3. Streptomyces sp. strain NEAA-3 was identified as Streptomyces plicatus strain NEAA-3 based on its cultural, morphological, physiological properties and 16S rRNA sequence analysis. The sequence data has been deposited under accession number OR501412.1 in the GenBank database. The face-centered central composite design (FCCD) was used to improve collagen-NPs biosynthesis. The maximum yield of collagen-NPs was 9.33 mg/mL with a collagen concentration of 10 mg/mL, an initial pH of 7, an incubation time of 72 h, and a temperature of 35 °C. Using the desirability function approach, the collagen-NPs biosynthesis obtained after FCCD optimization (9.53 mg/mL) was 3.92 times more than the collagen-NPs biosynthesis obtained before optimization process (2.43 mg/mL). The TEM analysis of collagen-NPs revealed hollow sphere nanoscale particles with an average diameter of 33.15 ± 10.02 nm. FTIR spectra confirmed the functional groups of the collagen, collagen-NPs and the cell-free supernatant that are essential for the efficient capping of collagen-NPs. The biosynthesized collagen-NPs exhibited antioxidant activity and anticancer activity against HeP-G2, MCF-7 and HCT116 cell lines. Collagen-NPs assessed as an effective drug loading carrier with methotrexate (MTX), a chemotherapeutic agent. The TEM analysis revealed that the average size of MTX-loaded collagen-NPs was 35.4 ± 8.9 nm. The percentages of drug loading (DL%) and encapsulation efficiency (EE%) were respectively 22.67 and 45.81%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10943001 | PMC |
http://dx.doi.org/10.1038/s41598-024-56064-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!