Mechanistic insight into the competition between interfacial and bulk reactions in microdroplets through NO ammonolysis and hydrolysis.

Nat Commun

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, P. R. China.

Published: March 2024

Reactive uptake of dinitrogen pentaoxide (NO) into aqueous aerosols is a major loss channel for NO in the troposphere; however, a quantitative understanding of the uptake mechanism is lacking. Herein, a computational chemistry strategy is developed employing high-level quantum chemical methods; the method offers detailed molecular insight into the hydrolysis and ammonolysis mechanisms of NO in microdroplets. Specifically, our calculations estimate the bulk and interfacial hydrolysis rates to be (2.3 ± 1.6) × 10 and (6.3 ± 4.2) × 10 ns, respectively, and ammonolysis competes with hydrolysis at NH concentrations above 1.9 × 10mol L. The slow interfacial hydrolysis rate suggests that interfacial processes have negligible effect on the hydrolysis of NO in liquid water. In contrast, NO ammonolysis in liquid water is dominated by interfacial processes due to the high interfacial ammonolysis rate. Our findings and strategy are applicable to high-chemical complexity microdroplets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10943240PMC
http://dx.doi.org/10.1038/s41467-024-46674-1DOI Listing

Publication Analysis

Top Keywords

interfacial hydrolysis
8
interfacial processes
8
liquid water
8
interfacial
6
hydrolysis
6
ammonolysis
5
mechanistic insight
4
insight competition
4
competition interfacial
4
interfacial bulk
4

Similar Publications

Beyond Fang's fury: a computational study of the enzyme-membrane interaction and catalytic pathway of the snake venom phospholipase A toxin.

Chem Sci

January 2025

LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal

Snake venom-secreted phospholipases A (svPLAs) are critical, highly toxic enzymes present in almost all snake venoms. Upon snakebite envenomation, svPLAs hydrolyze cell membrane phospholipids and induce pathological effects such as paralysis, myonecrosis, inflammation, or pain. Despite its central importance in envenomation, the chemical mechanism of svPLAs is poorly understood, with detrimental consequences for the design of small-molecule snakebite antidotes, which is highly undesirable given the gravity of the epidemiological data that ranks snakebite as the deadliest neglected tropical disease.

View Article and Find Full Text PDF

Cellulases are of paramount interest for upcoming biorefineries that utilize residue from agriculture and forestry to produce sustainable fuels and chemicals. Specifically, cellulases are used for the conversion of recalcitrant plant biomass to fermentable sugars in a so-called saccharification process. The vast literature on enzymatic saccharification frequently refers to low catalytic rates of cellulases as a main bottleneck for industrial implementation, but such statements are rarely supported by kinetic or thermodynamic considerations.

View Article and Find Full Text PDF

Highly efficient enzymatic enrichment of n-3 polyunsaturated fatty acid glycerides via interfacial biocatalysis in Pickering emulsions.

Food Chem

December 2024

Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China. Electronic address:

Article Synopsis
  • A novel Pickering interfacial biocatalysis (PIB) system was created for the enzymatic hydrolysis of algae and fish oils to enrich n-3 PUFAs glycerides.
  • Lipase AY 400SD was successfully immobilized on hollow core-shell silica nanoparticles, enhancing its effectiveness as an emulsifier in the water-in-oil Pickering emulsion.
  • The PIB system increased the n-3 PUFAs content by 9.17% to 23.09% and achieved over 90% recovery of n-3 PUFAs, proving to be stable and recyclable for future use.
View Article and Find Full Text PDF

Anion modulation enhances the internal electric field of CuCoO to improve the catalysis in ammonia borane hydrolysis.

J Colloid Interface Sci

December 2024

School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China. Electronic address:

Ammonia borane (NHBH, AB) is considered a promising chemical hydrogen storage material. The development of efficient, stable, and economical catalysts for AB hydrolysis is essential for realizing the hydrogen energy economy. In this study, a series of p-p heterojunction catalysts, labeled M (P/S/Cl)-CuCoO, were fabricated using the high-temperature vapor phase method to achieve anionic interface gradient doping.

View Article and Find Full Text PDF

This study investigated the stabilization mechanism, storage stability, and in vitro digestion characteristics of oil-in-water fish oil emulsions stabilized by β-Lg modified through enzymatic hydrolysis, glycation, and fibrillation. The stabilization mechanism was elucidated by comparing droplet size, ζ-potential, interfacial protein thickness, and microstructure. Results showed that β-Lg modified through these combined processes formed a three-dimensional network, providing superior stabilization, while other modified proteins stabilized emulsions via surface adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!