Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Liver-tissue engineering has proven valuable in treating liver diseases, but the construction of liver tissues with high fidelity remains challenging. Here, we present a novel three-dimensional (3D)-imprinted cell-sheet strategy for the synchronous construction of biomimetic hepatic microtissues with high accuracy in terms of cell type, density, and distribution. To achieve this, the specific composition of hepatic cells in a normal human liver was determined using a spatial proteogenomics dataset. The data and biomimetic hepatic micro-tissues with hexagonal hollow cross-sections indicate that cell information was successfully generated using a homemade 3D-imprinted device for layer-by-layer imprinting and assembling the hepatic cell sheets. By infiltrating vascular endothelial cells into the hollow section of the assembly, biomimetic hepatic microtissues with vascularized channels for nutrient diffusion and drug perfusion can be obtained. We demonstrate that the resultant vascularized biomimetic hepatic micro-tissues can not only be integrated into a microfluidic drug-screening liver-on-a-chip but also assembled into an enlarged physiological structure to promote liver regeneration. We believe that our 3D-imprinted cell sheets strategy will open new avenues for biomimetic microtissue construction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2024.02.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!