Vocalization, a means of social communication, is prevalent among many species, including humans. Both rats and mice use ultrasonic vocalizations (USVs) in various social contexts and affective states. The motor cortex is hypothesized to be involved in precisely controlling USVs through connections with critical regions of the brain for vocalization, such as the periaqueductal gray matter (PAG). However, it is unclear how neurons in the motor cortex are modulated during USVs. Moreover, the relationship between USV modulation of neurons and anatomical connections from the motor cortex to PAG is also not clearly understood. In this study, we first characterized the activity patterns of neurons in the primary and secondary motor cortices during emission of USVs in rats using large-scale electrophysiological recordings. We also examined the axonal projection of the motor cortex to PAG using retrograde labeling and identified two clusters of PAG-projecting neurons in the anterior and posterior parts of the motor cortex. The neural activity patterns around the emission of USVs differed between the anterior and posterior regions, which were divided based on the distribution of PAG-projecting neurons in the motor cortex. Furthermore, using optogenetic tagging, we recorded the USV modulation of PAG-projecting neurons in the posterior part of the motor cortex and found that they showed predominantly sustained excitatory responses during USVs. These results contribute to our understanding of the involvement of the motor cortex in the generation of USV at the neuronal and circuit levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10988357PMC
http://dx.doi.org/10.1523/ENEURO.0452-23.2024DOI Listing

Publication Analysis

Top Keywords

motor cortex
36
pag-projecting neurons
12
motor
10
cortex
9
axonal projection
8
periaqueductal gray
8
neurons motor
8
usv modulation
8
cortex pag
8
activity patterns
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!