Identification and quantification of trace metal(loid)s in water-extractable road dust nanoparticles using SP-ICP-MS.

Sci Total Environ

Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada.

Published: May 2024

Resuspension of road dust is a major source of airborne particulate matter (PM) in urban environments. Inhalation of ultrafine particles (UFP; < 0.1 μm) represents a health concern due to their ability to reach the alveoli and be translocated into the blood stream. It is therefore important to characterize chemical properties of UFPs associated with vehicle emissions. We investigated the capability of Single-Particle ICP-MS (SP-ICP-MS) to quantify key metal(loid)s in nanoparticles (NPs; < 0.1 μm) isolated from road dust collected in Toronto, Canada. Water extraction was performed to separate the <1-μm fraction from two different road dust samples (local road vs. arterial road) and a multi-element SP-ICP-MS analysis was then conducted on the samples' supernatants. Based on the particle number concentrations obtained for both supernatants, the metal(loid)-containing NPs could be grouped in the following categories: high (Cu and Zn, > 1.3 × 10 particles/L), medium (V, Cr, Ba, Pb, Sb, Ce, La), low (As, Co, Ni, < 4.6 × 10 particles/L). The limit of detection for particle number concentration was below 5.5 × 10 particles/L for most elements, except for Cu, Co, Ni, Cr, and V (between 0.9 and 7.7 × 10 particles/L). The results demonstrate that road dust contains a wide range of readily mobilizable metal(loid)-bearing NPs and that NP numbers may vary as a function of road type. These findings have important implications for human health risk assessments in urban areas. Further research is needed, however, to comprehensively assess the NP content of road dust as influenced by various factors, including traffic volume and speed, fleet composition, and street sweeping frequency. The described method can quickly characterize multiple isotopes per sample in complex matrices, and offers the advantage of rapid sample scanning for the identification of NPs containing potentially toxic transition metal(loid)s at a low detection limit.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.171720DOI Listing

Publication Analysis

Top Keywords

road dust
12
identification quantification
4
quantification trace
4
trace metalloids
4
metalloids water-extractable
4
water-extractable road
4
dust nanoparticles
4
nanoparticles sp-icp-ms
4
sp-icp-ms resuspension
4
resuspension road
4

Similar Publications

The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.

View Article and Find Full Text PDF

Accumulating evidence has shown that long-term exposure to particulate matter with aerodynamic diameter of less than 2.5 μm (PM2.5) causes Th1/Th2 imbalance and increases the risk of allergic asthma (AA) in children.

View Article and Find Full Text PDF

Historical mining towns: The establishment of 'Soil Planning Areas' for the risk management of contaminated soil.

J Hazard Mater

December 2024

Saxon State Office for Environment, Agriculture and Geology, Halsbrückerstr. 31a, Freiberg 09599, Germany.

Historical mining towns face financial challenges with the proposed Soil Monitoring Law of the European Union, which will require the management of soil contamination, since remediating soil in densely populated towns and cities is challenging. We compared the environmental impact of sulfide ore mining in the urban area of Outokumpu in Finland with that of other European sites, focusing on soil contamination. Soil sampling revealed that mine tailings were historically used in road construction.

View Article and Find Full Text PDF

Human activities have far-reaching impact on natural ecosystems, causing increasing disturbances and disruptions to the delicate balance of the environment. Poor land use planning, urbanization, infrastructure development, and unplanned tourism exacerbate contamination and degradation in tourist destinations, yet the pollution of potentially toxic elements (PTEs) in these environments remains inadequately explored. To address this issue, we investigated the concentrations of acid-digested PTEs in road dust in Abbottabad city (Pakistan) with heavy traffic.

View Article and Find Full Text PDF

Climatic forcing of the Southern Ocean deep-sea ecosystem.

Curr Biol

December 2024

Marine Core Research Institute (MaCRI), Kochi University, 200 Monobe-otsu, Nankoku, Kochi 783-8502, Japan.

The deep-time development of the Southern Ocean's deep-sea ecosystem remains poorly understood, despite being a key region in global ecological, climatological, and oceanographic systems, where deep water forms and biodiversity is unexpectedly high. Here, we present an ∼500,000-year fossil record of the deep-sea Southern Ocean ecosystem in the subantarctic zone. The results indicate that changes in surface productivity and the resulting food supply to the deep sea, driven by eolian dust input and iron fertilization, along with changes in bottom-water temperature influenced by deep-water circulation, have controlled the deep-sea ecosystem in the Southern Ocean on orbital (10-10 years) timescales following the Mid-Brunhes event (MBE), a major climatic transition ∼430,000 years ago.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!