Glioblastoma (GBM), deep in the brain, is more challenging to diagnose and treat than other tumors. Such challenges have blocked the development of high-impact therapeutic approaches that combine reliable diagnosis with targeted therapy. Herein, effective cyanine dyes (IRLy) with the near-infrared two region (NIR-II) adsorption and aggregation-induced emission (AIE) have been developed via an "extended conjugation & molecular rotor" strategy for multimodal imaging and phototherapy of deep orthotopic GBM. IRLy was synthesized successfully through a rational molecular rotor modification with stronger penetration, higher signal-to-noise ratio, and a high photothermal conversion efficiency (PCE) up to ∼60%, which can achieve efficient NIR-II photo-response. The multifunctional nanoparticles (Tf-IRLy NPs) were further fabricated to cross the blood-brain barrier (BBB) introducing transferrin (Tf) as a targeting ligand. Tf-IRLy NPs showed high biosafety and good tumor enrichment for GBM in vitro and in vivo, and thus enabled accurate, efficient, and less invasive NIR-II multimodal imaging and photothermal therapy. This versatile Tf-IRLy nanosystem can provide a reference for the efficient, precise and low-invasive multi-synergistic brain targeted photo-theranostics. In addition, the "extended conjugation & molecular rotor" strategy can be used to guide the design of other photothermal agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2024.03.020 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
Acute myeloid leukemia (AML) is a severe blood cancer with an urgent need for novel therapies for refractory or relapsed patients. Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1), an immune suppressive receptor expressed on immune cells and AML blasts but minimally on hematopoietic stem cells (HSCs), represents a potential therapeutic target. But there has been limited research on therapies targeting LAIR1 for AML and no published reports on LAIR1 antibody-drug conjugate (ADC).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany.
Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Physics, Qingdao University, Qingdao 266071, China. Electronic address:
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, and Department of Macromolecular Science and Engineering, School of Chemistry and Chemical Engineering, Heilongjiang University, Harbin 150080, P. R. China.
Biomaterials
December 2024
Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA. Electronic address:
Glioblastoma (GBM), the most common primary brain tumor, lacks effective treatments. Emerging evidence suggests mitochondria as a promising therapeutic target, albeit successfully targeting represents a major challenge. Recently, we discovered a group of triterpenes that can self-assemble into nanoparticles (NPs) for cancer treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!