Objective: Conventional frame-based stereotactic systems have circumferential base frames, often necessitating deep brain stimulation (DBS) surgery in two stages: intracranial electrode insertion followed by surgical re-preparation and pulse generator implantation. Some patients do not tolerate awake surgery, underscoring the need for a safe alternative for asleep DBS surgery. A frame-based stereotactic system with a skull-mounted "key" in lieu of a circumferential base frame received US FDA clearance. The authors describe the system's application for single-stage, asleep DBS surgery in 8 patients at their institution and review its workflow and technical considerations.
Methods: Eight patients underwent DBS lead insertion and IPG implantation in a single surgical preparation under general anesthesia using the system. Postoperative CT imaging confirmed lead placement.
Results: Eight patients underwent implantation of 15 total leads targeting the ventral intermediate nucleus (4 patients), globus pallidus internus (GPi; 3 patients), and subthalamic nucleus (STN; 1 patient). Intraoperative microelectrode recording was conducted for GPi and STN targets. Postoperative CT imaging revealed a mean ± SD radial error of 1.24 ± 0.45 mm (n = 15 leads), without surgical complications.
Conclusions: The stereotactic system facilitated safe and effective asleep, single-stage DBS surgery, maintaining traditional lead accuracy standards.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2024.1.JNS232563 | DOI Listing |
Medication-refractory focal epilepsy poses a significant challenge, with approximately 30% of patients ineligible for surgery due to the involvement of eloquent cortex in the epileptogenic network. For such patients with limited surgical options, electrical neuromodulation represents a promising alternative therapy. In this study, we investigate the potential of non-invasive temporal interference (TI) electrical stimulation to reduce epileptic biomarkers in patients with epilepsy by comparing intracerebral recordings obtained before, during, and after TI stimulation, and to those recorded during low and high kHz frequency (HF) sham stimulation.
View Article and Find Full Text PDFMov Disord
December 2024
National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China.
Background: Abnormal rapid eye movement (REM) sleep, including REM sleep behavior disorder (RBD) and reduced REM sleep, is common in Parkinson's disease (PD), highlighting the importance of further study on REM sleep. However, the biomarkers of REM disturbances remain unknown, leading to the lack of REM-specific neuromodulation interventions.
Objective: This study aims to investigate the neurophysiological biomarkers of REM disturbance in parkinsonian patients.
Clin Neurophysiol
December 2024
Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States.
Objective: Deep brain stimulation (DBS) targeting the subthalamic nucleus (STN) is a common treatment for motor symptoms of Parkinson's disease but its influence on non-motor symptoms is less clear. Sleep spindles are known to be reduced in patients with Parkinson's disease, but the effect of STN DBS is unknown. The objective of our study was to address this knowledge gap.
View Article and Find Full Text PDFEur J Neurol
January 2025
UOC Clinica Neurologica Rete Metropolitana NEUROMET, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
Background: The efficacy of subthalamic stimulation on axial signs of Parkinson's disease (PD) is debated in the literature. This study delves into the dynamic interplay of gait and posture, specifically probing their nuanced response to subthalamic stimulation and levodopa.
Methods: We used wearable sensor technology to examine alterations in the spatiotemporal parameters of gait and posture in individuals with PD before and 6 months after subthalamic deep brain stimulation (STN-DBS) surgery.
The landscape of therapeutic deep brain stimulation (DBS) for locomotor function recovery is rapidly evolving. This review provides an overview of electrical neuromodulation effects on spinal cord injury (SCI), focusing on DBS for motor functional recovery in human and animal models. We highlight research providing insight into underlying cellular and molecular mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!