Light-Driven Spontaneous Phonon Chirality and Magnetization in Paramagnets.

Phys Rev Lett

Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.

Published: March 2024

Spin-phonon coupling enables the mutual manipulation of phonon and spin degrees of freedom in solids. In this study, we reveal the inherent nonlinearity within this coupling. Using a paramagnet as an illustration, we demonstrate the nonlinearity by unveiling spontaneous symmetry breaking under a periodic drive. The drive originates from linearly polarized light, respecting a mirror reflection symmetry of the system. However, this symmetry is spontaneously broken in the steady state, manifested in the emergence of coherent chiral phonons accompanied by a nonzero magnetization. We establish an analytical self-consistency equation to find the parameter regime where spontaneous symmetry breaking occurs. Furthermore, we estimate realistic parameters and discuss potential materials that could exhibit this behavior. Our findings shed light on the exploration of nonlinear phenomena in magnetic materials and present possibilities for on-demand control of magnetization.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.096702DOI Listing

Publication Analysis

Top Keywords

spontaneous symmetry
8
symmetry breaking
8
light-driven spontaneous
4
spontaneous phonon
4
phonon chirality
4
chirality magnetization
4
magnetization paramagnets
4
paramagnets spin-phonon
4
spin-phonon coupling
4
coupling enables
4

Similar Publications

Two-dimensional (2D) van der Waals heterostructures consist of different 2D crystals with diverse properties, constituting the cornerstone of the new generation of 2D electronic devices. Yet interfaces in heterostructures inevitably break bulk symmetry and structural continuity, resulting in delicate atomic rearrangements and novel electronic structures. In this paper, we predict that 2D interfaces undergo "spontaneous curvature", which means when two flat 2D layers approach each other, they inevitably experience out-of-plane curvature.

View Article and Find Full Text PDF

Two-dimensional (2D) carbon allotropes, together with their binary and ternary counterparts, have attracted substantial research interest due to their peculiar geometries and properties. Among them, grapheneplus, a derivative of penta-graphene, has been proposed to exhibit unusual mechanical and electronic behaviour. In this work, we perform a comprehensive first-principles study on its isoelectronic and isostructural analogue, a grapheneplus-like BCN (gp-BCN) monolayer.

View Article and Find Full Text PDF

Programmable organization of uniform organic/inorganic functional building blocks into large-scale ordered superlattices has attracted considerable attention since the bottom-up self-organization strategy opens up a robust and universal route for designing novel and multifunctional materials with advanced applications in memory storage devices, catalysis, photonic crystals, and biotherapy. Despite making great efforts in the construction of superlattice materials, there still remains a challenge in the preparation of organic/inorganic hybrid superlattices with tunable dimensions and exotic configurations. Here, we report the spontaneous self-organization of polystyrene-tethered gold nanoparticles (AuNPs@PS) into freestanding organic/inorganic hybrid superlattices templated at the diethylene glycol-air interface.

View Article and Find Full Text PDF

Chirality, a basic property of symmetry breaking, is crucial for fields such as biology and physics. Recent advances in the study of chiral systems have stimulated interest in the discovery of symmetry-breaking states that enable exotic phenomena such as spontaneous gyrotropic order and superconductivity. Here we examine the interaction between light chirality and electron spins in indium selenide and study the effect of magnetic field on emerging tunnelling photocurrents at the Van Hove singularity.

View Article and Find Full Text PDF

Exceptional points facilitate peculiar dynamics in non-Hermitian systems. Yet, in photonics, they have mainly been studied in the classical realm. In this work, we reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!