The valley Hall effect arises from valley-contrasting Berry curvature and requires inversion symmetry breaking. Here, we propose a nonlinear mechanism to generate a valley Hall current in systems with both inversion and time-reversal symmetry, where the linear and second-order charge Hall currents vanish along with the linear valley Hall current. We show that a second-order valley Hall signal emerges from the electric field correction to the Berry curvature, provided a valley-contrasting anisotropic dispersion is engineered. We demonstrate the nonlinear valley Hall effect in tilted massless Dirac fermions in strained graphene and organic semiconductors. Our Letter opens up the possibility of controlling the valley degree of freedom in inversion symmetric systems via nonlinear valleytronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.096302 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!