Exploring the Equivalence between Two-Dimensional Classical and Quantum Turbulence through Velocity Circulation Statistics.

Phys Rev Lett

Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Boulevard de l'Observatoire CS 34229 - F 06304 NICE Cedex 4, France.

Published: March 2024

We study the statistics of velocity circulation in two-dimensional classical and quantum turbulence. We perform numerical simulations of the incompressible Navier-Stokes and the Gross-Pitaevskii (GP) equations for the direct and inverse cascades. Our GP simulations display clear energy spectra compatible with the double cascade theory of two-dimensional classical turbulence. In the inverse cascade, we found that circulation intermittency in quantum turbulence is the same as in classical turbulence. We compare GP data to Navier-Stokes simulations and experimental data from Zhu et al. [Phys. Rev. Lett. 130, 214001 (2023)PRLTAO0031-900710.1103/PhysRevLett.130.214001]. In the direct cascade, for nearly incompressible GP flows, classical and quantum turbulence circulation displays the same self-similar scaling. When compressibility becomes important, quasishocks generate quantum vortices and the equivalence of quantum and classical turbulence only holds for low-order moments. Our results establish the boundaries of the equivalence between two-dimensional classical and quantum turbulence.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.094002DOI Listing

Publication Analysis

Top Keywords

quantum turbulence
20
two-dimensional classical
16
classical quantum
16
classical turbulence
12
equivalence two-dimensional
8
turbulence
8
velocity circulation
8
classical
7
quantum
7
exploring equivalence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!