Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Calculating perturbation response properties of materials from first principles provides a vital link between theory and experiment, but is bottlenecked by the high computational cost. Here, a general framework is proposed to perform density functional perturbation theory (DFPT) calculations by neural networks, greatly improving the computational efficiency. Automatic differentiation is applied on neural networks, facilitating accurate computation of derivatives. High efficiency and good accuracy of the approach are demonstrated by studying electron-phonon coupling and related physical quantities. This work brings deep-learning density functional theory and DFPT into a unified framework, creating opportunities for developing ab initio artificial intelligence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.096401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!