We explain the appearance of magic angles and fractional Chern insulators in twisted K-valley homobilayer transition metal dichalcogenides by mapping their continuum model to a Landau level problem. Our approach relies on an adiabatic approximation for the quantum mechanics of valence band holes in a layer-pseudospin field that is valid for sufficiently small twist angles and on a lowest Landau level approximation that is valid for sufficiently large twist angles. It provides a simple qualitative explanation for the nearly ideal quantum geometry of the lowest moiré miniband at particular twist angles, predicts that topological flat bands occur only when the valley-dependent moiré potential is sufficiently strong compared to the interlayer tunneling amplitude, and provides a convenient starting point for the study of interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.096602DOI Listing

Publication Analysis

Top Keywords

twist angles
12
magic angles
8
angles fractional
8
fractional chern
8
chern insulators
8
insulators twisted
8
homobilayer transition
8
transition metal
8
metal dichalcogenides
8
landau level
8

Similar Publications

A new approach in generating stable crack propagation at twisted bilayer graphene/hBN heterostructures.

iScience

December 2024

Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.

Thermodynamic theory suggests that the obvious mechanical behavior caused by temperature and interlayer angle will affect the physical properties of materials, such as mechanical properties and transportation behavior, and it is different from the behavior in three-dimensional bulk materials. We observe an abnormal physical effect of bilayer graphene/hexagonal boron nitride (G/BN)-carbon nanotube (CNT) heterostructures, with a normalized out-of-plane deformation and normalized bond angle percentage to almost several times higher those of pristine G/BN heterostructures (without CNT) at 700-800 K. Our combined finite element theory and molecular dynamics simulations confirmed that the combination of CNT and interlayer angle diverted and bridged the propagating crack and provided a stable crack propagation path and crack tip opening displacement, resulting in the stress fields to be controlled around the CNT at high temperature.

View Article and Find Full Text PDF

Taking into account phase-polarization interactions is crucial for the formation of spatially structured laser beams. The effects that arise in this context can lead to the modulation of individual field components and the transformation of the overall light field. In this study, we investigate the impact of phase and polarization distributions with radial dependencies in polar coordinates on the longitudinal component of laser beams passing through a transmissive spatial light modulator (SLM) based on twisted nematic liquid crystals.

View Article and Find Full Text PDF

Generation of Isolated Flat Bands with Tunable Numbers through Moiré Engineering.

Phys Rev Lett

December 2024

Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA and Quantum Materials and Sensing Institute, Northeastern University, Burlington, Massachusetts 01803, USA.

In contrast to the Dirac-cone materials in which the low-energy spectrum features a pseudospin-1/2 structure, Lieb and Dice lattices both host triply degenerate low-energy excitations. Here, we discuss moiré structures involving twisted bilayers of these lattices, which are shown to exhibit a tunable number of isolated flat bands near the Fermi level due to the bipartite nature of their structures. These flat bands remain isolated from the high-energy bands even in the presence of small higher-order terms and chiral-symmetry-breaking interlayer tunneling.

View Article and Find Full Text PDF

The title compound, CHClNO, is significantly distorted from planarity, with a twist angle between the planes through the hy-droxy-benzene and acetamide groups being 23.5 (2)°. This conformation is supported by intra-molecular C-H⋯O and N-H⋯Cl contacts.

View Article and Find Full Text PDF

The mol-ecular structure of the title compound, CHNO reveals non-co-planarity between the central formamidine backbone and each of the outer meth-oxy- and -propyl- substituted benzene rings with dihedral angles of 7.88 (15) and 81.17 (15)°, respectively, indicating significant twists in the mol-ecule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!