Lie Algebraic Quantum Phase Reduction.

Phys Rev Lett

Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan.

Published: March 2024

We introduce a general framework of phase reduction theory for quantum nonlinear oscillators. By employing the quantum trajectory theory, we define the limit-cycle trajectory and the phase according to a stochastic Schrödinger equation. Because a perturbation is represented by unitary transformation in quantum dynamics, we calculate phase response curves with respect to generators of a Lie algebra. Our method shows that the continuous measurement yields phase clusters and alters the phase response curves. The observable clusters capture the phase dynamics of individual quantum oscillators, unlike indirect indicators obtained from density operators. Furthermore, our method can be applied to finite-level systems that lack classical counterparts.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.093602DOI Listing

Publication Analysis

Top Keywords

phase reduction
8
phase response
8
response curves
8
phase
7
quantum
5
lie algebraic
4
algebraic quantum
4
quantum phase
4
reduction introduce
4
introduce general
4

Similar Publications

Constructing well-dispersed active phase spontaneous redox for electrochemical nitrate reduction to ammonia.

Chem Commun (Camb)

January 2025

Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.

In this study, a distinctive multiple core-shell structure of Co nanoparticles inserted into N-doped carbon dodecahedron@Co hydroxide (Co/NCD@Co(OH)) was synthesized a spontaneous redox reaction between metallic Co and NO, ultimately materializing the fine dispersion and exposure of the active sites. The electronic interaction existing between the Co/NCD core and the Co(OH) shell brings a synergistic effect, conspicuously lessens the overpotential, and reinforces the yield-rate and faradaic efficiency of NH for electrochemical nitrate-ammonia conversion. This study underlines the spontaneous redox between the catalysts and substrate, rendering it as a synthetic strategy for designing genuine and well-dispersed active sites.

View Article and Find Full Text PDF

Harmless and efficient nickel enrichment from nickel-containing waste slag using vitrification technology.

Environ Sci Pollut Res Int

January 2025

Qingdao Qingli Environmental Protectionquipmen Co, LTD, Jiaozhou, 266300, China.

With the growing demand for nickel in the stainless steel and battery industries, conventional methods of extracting nickel from ores face challenges such as high production costs and environmental concerns. This study proposes a new process for the recovery of nickel metal and the production of nickel-iron alloys from nickel-bearing scrap. The reduction rates of nickel and iron oxides were investigated by optimizing the roasting temperature, time, and C/O ratio, and the process was optimized using response surface methodology (RSM).

View Article and Find Full Text PDF

Comparison of Hydrogen Bonded Organic Framework with Reduced Graphene Oxide-Pd Based Nanocatalyst: Which One Is More Efficient for Entrapment of Nitrophenol Pollutants?

Langmuir

January 2025

Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran.

In this study, a Pd nanoparticles@hydrogen-bonded organic framework (Pd NPs@HOF) thin film was fabricated at the toluene-water interface. The HOF was formed through the interaction of trimesic acid (TMA) and melamine (Mel) in the water phase, while Pd(0) was produced from the reduction of [PdCl(cod)] in the organic phase. The as-synthesized Pd NPs@HOF thin film was demonstrated to be an effective catalyst for the selective reduction of -nitrophenol and -nitrophenol to -aminophenol and -aminophenol.

View Article and Find Full Text PDF

A Novel Rabbit Model of Meibomian Gland Dysfunction-Induced Dry Eye.

Transl Vis Sci Technol

January 2025

Johnson & Johnson Vision Care, Inc., Jacksonville, FL, USA.

Purpose: The objective of this three-phase study was to develop a model of mild to moderate evaporative dry eye to be used to evaluate tear film stability endpoints during product development.

Methods: Rabbits were sedated prior to ophthalmic cautery of meibomian gland orifices. The orifices of eyelid meibomian glands were half-cauterized (to yield obstruction of every other meibomian gland orifices), fully cauterized (to yield obstruction of all meibomian gland orifices), or untreated.

View Article and Find Full Text PDF

The concept of inert matrix fuel (IMF) has been proposed to utilize the energetic value of Pu and transmute minor actinides in nuclear reactors. In order to offset the initial reactivity of nuclear fuel, gadolinium (Gd) is employed as a burnable poison, owing to its high neutron absorption cross-section. To gain insights into the radiation stability and influence of grain boundaries on irradiation behaviour, 5 mol% Gd-doped ceria samples, sintered at varying temperatures, were subjected to irradiation using 400 Kr ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!