Endolysins are produced by (bacterio)phages and play a crucial role in degrading the bacterial cell wall and the subsequent release of new phage progeny. These lytic enzymes exhibit a remarkable diversity, often occurring in a multimodular form that combines different catalytic and cell wall-binding domains, even in phages infecting the same species. Yet, our current understanding lacks insight into how environmental factors and ecological niches may have influenced the evolution of these enzymes. In this study, we focused on phages infecting Streptococcus thermophilus, as this bacterial species has a well-defined and narrow ecological niche, namely, dairy fermentation. Among the endolysins found in phages targeting this species, we observed limited diversity, with a singular structural type dominating in most of identified S. thermophilus phages. Within this prevailing endolysin type, we discovered a novel and highly conserved calcium-binding motif. This motif proved to be crucial for the stability and activity of the enzyme at elevated temperatures. Ultimately, we demonstrated its positive selection within the host's environmental conditions, particularly under the temperature profiles encountered in the production of yogurt, mozzarella, and hard cheeses that rely on S. thermophilus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980517 | PMC |
http://dx.doi.org/10.1093/molbev/msae055 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
MML Medical Centre, Bagno 2, 00-112 Warsaw, Poland.
Inappropriate and excessive use of antibiotics is responsible for the rapid development of antimicrobial resistance, which is associated with increased patient morbidity and mortality. There is an urgent need to explore new antibiotics or alternative antimicrobial agents. a commensal microorganism but is also responsible for numerous infections.
View Article and Find Full Text PDFBiomolecules
December 2024
Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Paterna, Valencia, Spain.
represents one of the main risks for food safety worldwide. Two enzyme-based antimicrobials (enzybiotics) have been combined in a novel treatment against this pathogenic bacterium, resulting in a powerful synergistic effect. One of the enzymes is an endolysin from phage vB_LmoS_188 with amidase activity (henceforth A10), and the other is an engineered version of glucose oxidase from (GOX).
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Food Science and Biotechnology, Research Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
is a significant cause of food poisoning. Broad-spectrum antibiotics, commonly used to control , are becoming less effective due to the rise of antibiotic-resistant strains, necessitating alternative control strategies. A -infecting bacteriophage, Dolk21, and its endolysin, PlyDolk21, were isolated and characterized.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia.
Bacterial ghosts (BGs), non-living empty envelopes of bacteria, are produced either through genetic engineering or chemical treatment of bacteria, retaining the shape of their parent cells. BGs are considered vaccine candidates, promising delivery systems, and vaccine adjuvants. The practical use of BGs in vaccine development for humans is limited because of concerns about the preservation of viable bacteria in BGs.
View Article and Find Full Text PDFVirulence
December 2025
National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
The emergence of antibiotic-resistant bacteria has attracted interest in the field of endolysins. Here, we analyzed the diversity of endolysins and identified a new endolysin, Ply2741, that exhibited broad-spectrum bactericidal activity. Our results demonstrated that Ply2741 could effectively eradicate multidrug-resistant gram-positive pathogens and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!