Electrochemical reduction of CO to highly valuable products is a promising way to reduce CO emissions. The shape and facets of metal nanocatalysts are the key parameters in determining the catalytic performance. However, the exposed crystal facets of ZnO with different morphologies and which facets achieve a high performance for CO reduction are still controversial. Here, we systematically investigate the effect of the facet-dependent reactivity of reduction of CO to CO on ZnO (nanowire, nanosheet, and flower-like). The ZnO nanosheet with exposed (110) facet exhibited prominent catalytic performance with a Faradaic efficiency of CO up to 84% and a current density of -10 mA cm at -1.2 V versus RHE, far outperforming the ZnO nanowire (101) and ZnO nanoflower (103). Based on detailed characterizations and kinetic analysis, the ZnO nanosheet (110) with porous architecture increased the exposure of active sites. Further studies revealed that the high CO selectivity originated from the enhancement of CO adsorption and activation on the ZnO (110) facet, which promoted the conversion of CO toward CO. This study provides a new way to tailor the activity and selectivity of metal catalysts by engineering exposed specific facets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c01797 | DOI Listing |
Anal Chim Acta
January 2025
Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, PR China. Electronic address:
Background: Accurate monitoring glucose level is significant for human health management, especially in the prevention, diagnosis, and management of diabetes. Electrochemical quantification of glucose is a convenient and rapid detection method, and the crucial aspect in achieving great sensing performance lies in the selection and design of the electrode material. Among them, CuO, with highly catalysis ability, is commonly used as electrocatalyst in non-enzymatic glucose sensing.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China. Electronic address:
It is well known that metals and metal oxides with different crystal facets exhibit varying sensitivity in gas sensors, but this strategy is rarely used in metal-organic frameworks (MOFs). Herein, we proved for the first time that Cu metal-organic with high energy crystal facets (Cu-MOF-74-300) shows a much higher sensitivity than the low energy crystal facets (Cu-MOF-74-110), with a up to 2 times response more than Cu-MOF-74-110 and ultra-low limit of detection (LOD) of 68 ppb to toluene vapors. In addition, this strategy was further demonstrated on MOF-14 and HKUST-1, which are also Cu-centered and exhibit clear recognition effects on benzene and xylene, respectively.
View Article and Find Full Text PDFACS Nanosci Au
December 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Acidic oxygen evolution reaction (OER) has long been the bottleneck of proton exchange membrane water electrolysis. Ru- and Ir-based oxides are currently state-of-the-art electrocatalysts for acidic OER, but their high cost limits their widespread application. CoO is a promising alternative, yet the performance requires further improvement.
View Article and Find Full Text PDFWater Res
December 2024
State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
Understanding the competition for adsorption between arsenate and other common oxyanions at mineral-water interfaces is critical for enhancing arsenate retention in the subsurface environment and mitigating exposure risks. This study investigated the competitive adsorption between arsenate and phosphate on hematite facets using batch experiments, together with in-situ infrared spectroscopy, two-dimensional correlation spectroscopy (2D-COS), and ab initio molecular dynamic (AIMD) simulations. This study's findings revealed that hematite exhibited notable selectivity for arsenate over phosphate in both adsorption capacity and rate, with selectivity significantly influenced by the exposed facets of the hematite and reaction concentrations.
View Article and Find Full Text PDFNano Lett
December 2024
School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China.
Direct oxidation of 5-hydroxymethylfurfural (HMF) to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), crucial for medical supply production, is hindered by overoxidation. We synthesized gold nanomaterials with distinct single-crystal facets, {111} in octahedra (OC), {100} in nanocubes (NCs), and {110} in rhombic dodecahedra (RD), to investigate the facet-dependent HMF oxidation. The Au RD achieved the spontaneous oxidation of HMF to HMFCA with stoichiometric hydrogen production, maintaining 95% carbon balance, 91% yield, and 98% selectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!