We report on the demonstration of a diode-pumped, Tm:YLF-based, chirped pulse amplification laser system operating at λ ≈ 1.9 µm that produces amplified pulse energies exceeding 1.5 J using a single 8-pass power amplifier. The amplified pulses are subsequently compressed to sub-300 fs durations by a diffraction grating pair, producing record >1 TW peak power pulses. To the best of our knowledge, this is the highest peak power demonstrated for any solid-state, near-2 µm laser architecture and illustrates the potential of Tm:YLF for the next generation of high-power, diode-pumped ultrashort lasers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.519542 | DOI Listing |
Front Physiol
December 2024
Department of Sport and Exercise Science, Paris Lodron University Salzburg, Salzburg, Austria.
Introduction: Our recent meta-analyses have demonstrated that high-intensity interval training (HIIT) causes a range of mean changes in various measures and predictors of endurance and sprint performance in athletes. Here, we extend the analyses to relationships between mean changes of these measures and consider implications for understanding and improving HIIT that were not apparent in the previous analyses.
Methods: The data were mean changes from HIIT with highly trained endurance and elite other (mainly team sport) athletes in studies where two or more measures or predictors of performance were available.
Nanoscale
January 2025
Department of Physics, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India.
In this study, we investigate a novel hybrid borocarbonitride (bpn-BCN) 2D material inspired by recent advances in carbon biphenylene synthesis, using first-principles calculations and semi-classical Boltzmann transport theory. Our analysis confirms the structural stability of bpn-BCN through formation energy, elastic coefficients, phonon dispersion, and molecular dynamics simulations at 300 K and 800 K. The material exhibits an indirect band gap of 0.
View Article and Find Full Text PDFBull Exp Biol Med
January 2025
Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia.
The effect of optical stimulation at a frequency of 10 Hz (OS) on temporal parameters of sensorimotor activity in healthy subjects (n=32) was studied. The expression of the activation response was determined by the ratio of spectral power values (SPα2, μV) of the high frequency (10-13 Hz) subrange of the α-rhythm of the initial EEG with closed and opened eyes and the frequency of the maximum α-peak (IAPF). A test for simple motor reaction time was performed under normal and OS conditions.
View Article and Find Full Text PDFSci Rep
January 2025
Women's Operational Military Exposure Network Center of Excellence (WOMEN COE), VA Palo Alto Health Care System, Palo Alto, USA.
Anhedonia, a core symptom of depression, has been defined as the loss of pleasure or lack of reactivity to pleasurable stimuli. Considering the relevance of alpha asymmetry to MDD and anhedonia, we explored the effect of dorsolateral prefrontal cortex (DLPFC) stimulation on frontal and posterior EEG alpha asymmetry (FAA and PAA, respectively), in this exploratory investigation. 61 participants randomly received sham (n = 11), bilateral (BS; n = 25), or unilateral stimulation (US; n = 25) of the DLPFC.
View Article and Find Full Text PDFSci Rep
January 2025
Electrical Power and Machines Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
To improve the inadequate reliability of the grid that has led to a worsening energy crisis and environmental issues, comprehensive research on new clean renewable energy and efficient, cost-effective, and eco-friendly energy management technologies is essential. This requires the creation of advanced energy management systems to enhance system reliability and optimize efficiency. Demand-side energy management systems are a superior solution for multiple reasons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!