Single-shot laser ablation is performed on the surface of a transparent glass material using a radially polarized femtosecond beam. Theoretical and experimental investigation revealed the significant role of the material interface under high-numerical-aperture conditions. The longitudinal electric field at the focus was remarkably enhanced due to the total reflection on the interface when a radially polarized beam was focused on the back surface of the glass from the inside using an immersion lens. This focusing condition enabled the fabrication of a small ablation hole sized 67 nm. This study offers a novel, to the best of our knowledge, approach to realize laser nanoprocessing with radially polarized beams.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.517382DOI Listing

Publication Analysis

Top Keywords

radially polarized
16
laser nanoprocessing
8
longitudinal electric
8
electric field
8
polarized beam
8
nanoprocessing enhanced
4
enhanced longitudinal
4
radially
4
field radially
4
polarized
4

Similar Publications

Introduction: Phenolic compounds garner interest in developing medicines, nutraceuticals, and cosmeceuticals based on natural products. The quantity of phenolic compounds in a sample is commonly determined via spectrophotometry; however, this instrumented technique is relatively laborious and time consuming and requires a large amount of reagents.

Objective: This work aimed to develop a simple, point-of-need colorimetric sensor to rapidly determine total phenolic content (TPC) in tea extracts.

View Article and Find Full Text PDF

Taking into account phase-polarization interactions is crucial for the formation of spatially structured laser beams. The effects that arise in this context can lead to the modulation of individual field components and the transformation of the overall light field. In this study, we investigate the impact of phase and polarization distributions with radial dependencies in polar coordinates on the longitudinal component of laser beams passing through a transmissive spatial light modulator (SLM) based on twisted nematic liquid crystals.

View Article and Find Full Text PDF

Liquid crystal (LC) based biosensors offer a sensitive platform for detecting biomolecules due to their ability to respond to molecular interactions through changes in LC orientations. In this paper, we introduce a novel LC biosensor using 4-heptyl-4-biphenyl carbonitrile (7CB) to detect Bovine Serum Albumin (BSA). The interaction between BSA and 7CB was investigated using polarising optical microscopy (POM), molecular docking (MD), and Raman spectroscopy.

View Article and Find Full Text PDF

Cell-autonomous action of in radial migration of cortical projection neurons.

Front Mol Neurosci

December 2024

State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Neuronal radial migration is a fundamental process for cortical development, the disruption of which causes neurological and psychiatric dysfunctions. SLIT2 plays diverse functions in brain development and is a well-known axon guidance molecule. In this study, we investigated the radial migration of projection neurons in the developing cerebral cortex by knockdown (KD) of in mice.

View Article and Find Full Text PDF

Development and functions of the area opaca of the chick embryo.

Dev Biol

December 2024

Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK. Electronic address:

Before radial symmetry-breaking of the blastoderm, the chick embryo is distinctly divided into a central area pellucida and a surrounding region, the area opaca. In this review, we focus on the area opaca and its functions. First, we survey current knowledge about how the area opaca is formed during the intrauterine period and how it sets up its initial tissue structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!