Click-through rate (CTR) prediction is a term used to predict the probability of a user clicking on an ad or item and has become a popular research area in advertising. As the volume of Internet data increases, the labor costs of traditional feature engineering continue to rise. To reduce the dependence on feature interactions, this paper proposes a fusion model that combines explicit and implicit feature interactions, called the Two-Tower Multi-Head Attention Neural Network (TMH) approach. The model integrates multiple components such as multi-head attention, residual network, and deep neural networks into an end-to-end model that automatically obtains vector-level combinations of explicit and implicit features to predict click-through rates through higher-order explicit and implicit interactions. We evaluated the effectiveness of TMH in CTR prediction through numerous experiments using three real datasets. The results demonstrate that our proposed method not only outperforms existing prediction methods but also offers good interpretability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942034 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295440 | PLOS |
Front Plant Sci
December 2024
School of Software, Henan Institute of Science and Technology, Xinxiang, Henan, China.
Introduction: Pests are important factors affecting the growth of cotton, and it is a challenge to accurately detect cotton pests under complex natural conditions, such as low-light environments. This paper proposes a low-light environments cotton pest detection method, DCP-YOLOv7x, based on YOLOv7x, to address the issues of degraded image quality, difficult feature extraction, and low detection precision of cotton pests in low-light environments.
Methods: The DCP-YOLOv7x method first enhances low-quality cotton pest images using FFDNet (Fast and Flexible Denoising Convolutional Neural Network) and the EnlightenGAN low-light image enhancement network.
Sci Rep
January 2025
School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, 410114, China.
In order to solve the problem of weak single domain generalization ability in existing crowd counting methods, this study proposes a new crowd counting framework called Multi-scale Attention and Hierarchy level Enhancement (MAHE). Firstly, the model can focus on both the detailed features and the macro information of structural position changes through the fusion of channel attention and spatial attention. Secondly, the addition of multi-head attention feature module facilitates the model's capacity to effectively capture complex dependency relationships between sequence elements.
View Article and Find Full Text PDFBrief Bioinform
November 2024
School of Information Science and Technology, Northeast Normal University, 130117 Changchun, China.
Sci Rep
December 2024
School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou, 434100, Hubei, China.
Emotions play a crucial role in human thoughts, cognitive processes, and decision-making. EEG has become a widely utilized tool in emotion recognition due to its high temporal resolution, real-time monitoring capabilities, portability, and cost-effectiveness. In this paper, we propose a novel end-to-end emotion recognition method from EEG signals, called MSDCGTNet, which is based on the Multi-Scale Dynamic 1D CNN and the Gated Transformer.
View Article and Find Full Text PDFSci Rep
December 2024
School of Public Health, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
The study aims to address the critical issue of toxic side effects resulting from drug combinations, which can significantly increase health risks, clinical complications, and lead to drug being withdrawn from the market. A model named TSEDDI (toxic side effects of drug-drug interaction) has been developed to improve the identification of drug pairs that may induce toxicity or adverse reactions. By utilizing drug chemical structures and diverse proteins, we employ a convolutional neural network (CNN) to extract features from molecular images, enzyme proteins, transporter proteins, and target proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!