Neural flip-flops I: Short-term memory.

PLoS One

Department of Science and Mathematics, University of Hawaii, Honolulu, Hawaii, United States of America.

Published: March 2024

The networks proposed here show how neurons can be connected to form flip-flops, the basic building blocks in sequential logic systems. The novel neural flip-flops (NFFs) are explicit, dynamic, and can generate known phenomena of short-term memory. For each network design, all neurons, connections, and types of synapses are shown explicitly. The neurons' operation depends only on explicitly stated, minimal properties of excitement and inhibition. This operation is dynamic in the sense that the level of neuron activity is the only cellular change, making the NFFs' operation consistent with the speed of most brain functions. Memory tests have shown that certain neurons fire continuously at a high frequency while information is held in short-term memory. These neurons exhibit seven characteristics associated with memory formation, retention, retrieval, termination, and errors. One of the neurons in each of the NFFs produces all of the characteristics. This neuron and a second neighboring neuron together predict eight unknown phenomena. These predictions can be tested by the same methods that led to the discovery of the first seven phenomena. NFFs, together with a decoder from a previous paper, suggest a resolution to the longstanding controversy of whether short-term memory depends on neurons firing persistently or in brief, coordinated bursts. Two novel NFFs are composed of two and four neurons. Their designs follow directly from a standard electronic flip-flop design by moving each negation symbol from one end of the connection to the other. This does not affect the logic of the network, but it changes the logic of each component to a logic function that can be implemented by a single neuron. This transformation is reversible and is apparently new to engineering as well as neuroscience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942071PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300534PLOS

Publication Analysis

Top Keywords

short-term memory
16
neural flip-flops
8
neurons
7
memory
6
short-term
4
flip-flops short-term
4
memory networks
4
networks proposed
4
proposed neurons
4
neurons connected
4

Similar Publications

This study evaluates three Machine Learning (ML) models-Temporal Kolmogorov-Arnold Networks (TKAN), Long Short-Term Memory (LSTM), and Temporal Convolutional Networks (TCN)-focusing on their capabilities to improve prediction accuracy and efficiency in streamflow forecasting. We adopt a data-centric approach, utilizing large, validated datasets to train the models, and apply SHapley Additive exPlanations (SHAP) to enhance the interpretability and reliability of the ML models. The results show that TKAN outperforms LSTM but slightly lags behind TCN in streamflow forecasting.

View Article and Find Full Text PDF

Emotion recognition plays a crucial role in brain-computer interfaces (BCI) which helps to identify and classify human emotions as positive, negative, and neutral. Emotion analysis in BCI maintains a substantial perspective in distinct fields such as healthcare, education, gaming, and human-computer interaction. In healthcare, emotion analysis based on electroencephalography (EEG) signals is deployed to provide personalized support for patients with autism or mood disorders.

View Article and Find Full Text PDF

Peptide ion mobility adds an extra dimension of separation to mass spectrometry-based proteomics. The ability to accurately predict peptide ion mobility would be useful to expedite assay development and to discriminate true answers in a database search. There are methods to accurately predict peptide ion mobility through drift tube devices, but methods to predict mobility through high-field asymmetric waveform ion mobility (FAIMS) are underexplored.

View Article and Find Full Text PDF

Monitoring the quantity and quality of karst springs is essential for groundwater resource management. However, it is challenging to robustly forecast the karst spring discharge and pollutant concentration due to the high complexity and heterogeneity of karst aquifers. Few researchers have addressed the long-term prediction of hourly spring quantity and quality, which is crucial for emergency management.

View Article and Find Full Text PDF

The Gravity Recovery and Climate Experiment (GRACE) and its follow-on (GRACE-FO) missions have provided estimates of Terrestrial Water Storage Anomalies (TWSA) since 2002, enabling the monitoring of global hydrological changes. However, temporal gaps within these datasets and the lack of TWSA observations prior to 2002 limit our understanding of long-term freshwater variability. In this study, we develop GRAiCE, a set of four global monthly TWSA reconstructions from 1984 to 2021 at 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!