Elucidation of the thermotolerance mechanism of erythritol-producing Yarrowia lipolytica is of great significance to breed robust industrial strains and reduce cost. This study aimed to breed thermotolerant Y. lipolytica and investigate the mechanism underlying the thermotolerant phenotype. Yarrowia lipolytica HT34, Yarrowia lipolytica HT36, and Yarrowia lipolytica HT385 that were capable of growing at 34 °C, 36 °C, and 38.5 °C, respectively, were obtained within 150 days (352 generations) by adaptive laboratory evolution (ALE) integrated with Co-γ radiation and ultraviolet ray radiation. Comparative genomics analysis showed that genes involved in signal transduction, transcription, and translation regulation were mutated during adaptive evolution. Further, we demonstrated that thermal stress increased the expression of genes related to DNA replication and repair, ceramide and steroid synthesis, and the degradation of branched amino acid (BCAA) and free fatty acid (FFA), while inhibiting the expression of genes involved in glycolysis and the citrate cycle. Erythritol production in thermotolerant strains was remarkably inhibited, which might result from the differential expression of genes involved in erythritol metabolism. Exogenous addition of BCAA and soybean oil promoted the growth of HT385, highlighting the importance of BCAA and FFA in thermal stress response. Additionally, overexpression of 11 out of the 18 upregulated genes individually enabled Yarrowia lipolytica CA20 to grow at 34 °C, of which genes A000121, A003183, and A005690 had a better effect. Collectively, this study provides novel insights into the adaptation mechanism of Y. lipolytica to thermal stress, which will be conducive to the construction of thermotolerant erythritol-producing strains. KEY POINTS: • ALE combined with mutagenesis is efficient for breeding thermotolerant Y. lipolytica • Genes encoding global regulators are mutated during thermal adaptive evolution • Ceramide and BCAA are critical molecules for cells to tolerate thermal stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10943161PMC
http://dx.doi.org/10.1007/s00253-024-13103-8DOI Listing

Publication Analysis

Top Keywords

yarrowia lipolytica
24
thermal stress
20
genes involved
12
expression genes
12
lipolytica
9
erythritol-producing yarrowia
8
lipolytica thermal
8
thermotolerant lipolytica
8
adaptive evolution
8
genes
7

Similar Publications

Metabolic engineering of Yarrowia lipolytica for the production and secretion of the saffron ingredient crocetin.

Biotechnol Biofuels Bioprod

January 2025

Department of Bioengineering, Imperial College Centre for Synthetic Biology, Bezos Centre for Sustainable Protein, UKRI Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, SW7 2AZ, UK.

Background: Crocetin is a multifunctional apocarotenoid natural product derived from saffron, holding significant promises for protection against various diseases and other nutritional applications. Historically, crocetin has been extracted from saffron stigmas, but this method is hindered by the limited availability of high-quality raw materials and complex extraction processes. To overcome these challenges, metabolic engineering and synthetic biology can be applied to the sustainable production of crocetin.

View Article and Find Full Text PDF

Screening of Plant UDP-Glycosyltransferases for Betanin Production in Yeast.

Appl Biochem Biotechnol

January 2025

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark.

To cover the rising demand for natural food dyes, new sources and production methods are needed. Microbial fermentation of nature-identical colours, such as the red pigment betanin, has the potential to be a cost-efficient alternative to plant extraction. The last step of betanin production is catalysed by a UDP-glycosyltransferase (UGT).

View Article and Find Full Text PDF

This study aimed to compare the effects of cellobiose hydrolysis, whether occurring inside or outside the cell, on the ability of Saccharomyces cerevisiae strains to ferment this sugar and then apply the most effective strategy to industrial S. cerevisiae strains. Firstly, two recombinant laboratory S.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates genomic changes in a key yeast used in biotechnology under spontaneous and induced mutagenic conditions.
  • Findings highlight a mutation rate of about 4 × 10 events per base pair per cell division, with specific patterns like C-to-T transitions as the most common spontaneous mutations.
  • Exposure to mutagens like UV light and Zeocin significantly increases mutation rates, with Zeocin leading to unique substitution patterns and a higher frequency of insertions and deletions.
View Article and Find Full Text PDF

Advancing Succinic Acid Biomanufacturing Using the Nonconventional Yeast .

J Agric Food Chem

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.

Succinic acid is an essential bulk chemical with wide-ranging applications in materials, food, and pharmaceuticals. With the advancement of biotechnology, there has been a surge in focus on low-carbon sustainable microbial synthesis methods for producing biobased succinic acid. Due to its high intrinsic acid tolerance, has gained recognition as a competitive chassis for the industrial manufacture of succinic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!