The body surface potential mapping of the heart during the period of ventricular depolarization and the inotropic function of the ventricles were studied in rats under conditions of a translational model of post-infarction chronic heart failure developed by us. We revealed a statistically significant (p<0.001) correlation between the left-ventricular ejection fraction and the values of the maximum positive and negative extrema of the cardioelectric field on the body surface of rats with post-infarction chronic heart failure caused by anterior transmural myocardial infarction. The calculated linear regression equations have high predictive efficiency, which makes it possible to use the amplitude characteristics of the heart cardioelectric field as a marker of the development of chronic heart failure.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-024-06040-zDOI Listing

Publication Analysis

Top Keywords

ventricular depolarization
8
chronic heart
8
heart failure
8
correlation left
4
left ventricular
4
ventricular systolic
4
systolic dysfunction
4
dysfunction ventricular
4
depolarization post-infarction
4
post-infarction model
4

Similar Publications

A Probabilistic Modeling Framework for the Prediction of Spontaneous Premature Beats and Reentry Initiation.

Heart Rhythm

January 2025

Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA. Electronic address:

Background: Spontaneously occurring life threatening reentrant arrhythmias result when a propagating premature beat encounters a region with significant dispersion of refractoriness. Although localized structural tissue heterogeneities and prescribed cell functional gradients have been incorporated into computational electrophysiological models, a quantitative framework for the evolution from normal to abnormal behavior that occurs via disease is lacking.

Objective: The purpose of this study was to develop a probabilistic modeling framework that represents the complex interplay of cell function and tissue structure in health and disease which predicts the emergence of premature beats and the initiation of reentry.

View Article and Find Full Text PDF

Background: Ventricular arrhythmia is a common type of arrhythmia observed in clinical practice. It is primarily characterized by premature ventricular contractions, ventricular tachycardia, and ventricular fibrillation. Abnormal formation or transmission of cardiac electrical impulses in patients affects cardiac ejection function.

View Article and Find Full Text PDF

Background: Interventricular dyssynchrony derived from the classic non-physiological stimulation (n-PS) of the right ventricle (RV) is a known cause of left ventricular dysfunction (LVDys).

Methods: This was a prospective descriptive single-center study. We analyzed patients who develop LVDys with n-PS, and the results after upgrading to conduction system pacing (CSP).

View Article and Find Full Text PDF

Background -Smoking is associated with arrhythmia and sudden cardiac death, but the biological mechanisms remain unclear. In electrocardiogram (ECG) recordings abnormal durations of ventricular repolarization (QT interval), atrial depolarization (P wave), and atrioventricular depolarization (PR interval and segment), predict cardiac arrhythmia and mortality. Previous analyses of the National Health and Nutrition Examination Survey (NHANES) database for associations between smoking and ECG abnormalities were incomplete.

View Article and Find Full Text PDF

The effect of a citrus-derived flavonoid, hesperetin, on the automaticity and contraction of isolated guinea pig myocardium was examined. Hesperetin inhibited the rate of ectopic action potential firing of the pulmonary vein myocardium; the slope of the diastolic depolarization was decreased with minimum change in the action potential waveform. The effect was dependent on the concentration; the EC value for firing rate was 56.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!