The low-molecular-weight PsbM and PsbT proteins of Photosystem II (PS II) are both located at the monomer-monomer interface of the mature PS II dimer. Since the extrinsic proteins are associated with the final step of assembly of an active PS II monomer and, in the case of PsbO, are known to impact the stability of the PS II dimer, we have investigated the potential cooperativity between the PsbM and PsbT subunits and the PsbO, PsbU and PsbV extrinsic proteins. Blue-native polyacrylamide electrophoresis and western blotting detected stable PS II monomers in the ∆PsbM:∆PsbO and ∆PsbT:∆PsbO mutants that retained sufficient oxygen-evolving activity to support reduced photoautotrophic growth. In contrast, the ∆PsbM:∆PsbU and ∆PsbT:∆PsbU mutants assembled dimeric PS II at levels comparable to wild type and supported photoautotrophic growth at rates similar to those obtained with the corresponding ∆PsbM and ∆PsbT cells. Removal of PsbV was more detrimental than removal of PsbO. Only limited levels of dimeric PS II were observed in the ∆PsbM:∆PsbV mutant and the overall reduced level of assembled PS II in this mutant resulted in diminished rates of photoautotrophic growth and PS II activity below those obtained in the ∆PsbM:∆PsbO and ∆PsbT:∆PsbO strains. In addition, the ∆PsbT:∆PsbV mutant did not assemble active PS II centers although inactive monomers could be detected. The inability of the ∆PsbT:∆PsbV mutant to grow photoautotrophically, or to evolve oxygen, suggested a stable oxygen-evolving complex could not assemble in this mutant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11108944 | PMC |
http://dx.doi.org/10.1007/s11120-024-01091-9 | DOI Listing |
Photosynth Res
June 2024
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
The low-molecular-weight PsbM and PsbT proteins of Photosystem II (PS II) are both located at the monomer-monomer interface of the mature PS II dimer. Since the extrinsic proteins are associated with the final step of assembly of an active PS II monomer and, in the case of PsbO, are known to impact the stability of the PS II dimer, we have investigated the potential cooperativity between the PsbM and PsbT subunits and the PsbO, PsbU and PsbV extrinsic proteins. Blue-native polyacrylamide electrophoresis and western blotting detected stable PS II monomers in the ∆PsbM:∆PsbO and ∆PsbT:∆PsbO mutants that retained sufficient oxygen-evolving activity to support reduced photoautotrophic growth.
View Article and Find Full Text PDFPlant Biol (Stuttg)
March 2024
Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China.
Artemisia L. is the largest genus in the Asteraceae, and well known for its high medicinal value. The morphological features of Artemisia species are similar, making taxonomic identification and evolutionary research difficult.
View Article and Find Full Text PDFMol Biotechnol
December 2024
Zhejiang Academy of Forestry, Hangzhou, 310023, China.
Cinnamomum daphnoides (Siebold & Zucc 1846) is a rare and endangered island species with a unique Sino-Japanese distribution pattern. However, inormation regarding the species' chloroplast (cp) genome, structural features, and the phylogenetic relationship is still lacking. We utilized high-throughput sequencing technology to assemble and annotate the first cp genome of C.
View Article and Find Full Text PDFPlant Physiol Biochem
November 2018
Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Michel 11, I-15121, Alessandria, Italy. Electronic address:
Salicornia veneta (Pignatti et Lausi) is an extreme halophyte living in salt marsh where NaCl concentration may be as high as 1 M. Here we report on the isolation and characterization of a PSII preparation obtained by Triton X-100 solubilisation of the thylakoid membrane. By a combination of gel electrophoresis, immunoblotting and mass spectrometry, the depletion of a number of PSII proteins such as PsbQ, PsbM and PsbT was highlighted.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
December 2012
Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, UK.
Photosystem II (PSII) mutants are useful experimental tools to trap potential intermediates involved in the assembly of the oxygen-evolving PSII complex. Here, we focus on the subunit composition of the RC47 assembly complex that accumulates in a psbC null mutant of the cyanobacterium Synechocystis sp. PCC 6803 unable to make the CP43 apopolypeptide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!