Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single-atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co-TiO/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single-atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof-of-concept verification, the resulting Co-TiO/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at -1.0 V, far superior to that of traditional indirect reduction-driven commercial Pd/C (52 %) and direct reduction-driven Co-N-C (44 %). Moreover, its dechlorination rate constant of 1.64 h was 4.3 and 8.6 times more active than those of Pd/C (0.38 h) and Co-N-C (0.19 h), respectively. Our research sheds light on the rational design of hydrogen spillover-related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202401386DOI Listing

Publication Analysis

Top Keywords

single-atom reverse
8
reverse hydrogen
8
hydrogen spillover
8
water dissociation
8
oxide layer
8
layer titanium
8
titanium foam
8
dechlorination
5
cobalt single-atom
4
hydrogen
4

Similar Publications

Tailoring a High Loading Atomic Zinc with Weak Binding to Sodium Toward High-Energy Sodium Metal Batteries.

Small

January 2025

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.

Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.

View Article and Find Full Text PDF

Active Hydroxyl-Mediated Preferential Cleavage of Carbon-Carbon Bonds in Electrocatalytic Glycerol Oxidation.

Angew Chem Int Ed Engl

January 2025

Inner Mongolia University, College of Chemistry and Chemical Engineering, 235 West University Street, Saihan District, 010021, Hohhot, CHINA.

Electrocatalytic glycerol oxidation reaction (GOR) to produce high-value formic acid (FA) is hindered by high formation potential of active species and sluggish C-C bond cleavage kinetics. Herein, Ni single-atom (NiSA) and Co single-atom (CoSA) dual sites anchored on nitrogen-doped carbon nanotubes embedded with Ni0.1Co0.

View Article and Find Full Text PDF

Owing to their synergistic interactions, dual-atom catalysts (DACs) with well-defined active sites are attracting increasing attention. However, more experimental research and theoretical investigations are needed to further construct explicit dual-atom sites and understand the synergy that facilitates multistep catalytic reactions. Herein, we precisely design a series of asymmetric selenium-based dual-atom catalysts that comprise heteronuclear SeN-MN (M = Fe, Mn, Co, Ni, Cu, Mo, etc.

View Article and Find Full Text PDF

Constructing atomically dispersed Ni-Mn catalysts for electrochemical CO reduction over the wide potential window.

J Colloid Interface Sci

January 2025

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, PR China. Electronic address:

Single-atom catalysts (SACs), known for their high atomic utilization efficiency, are highly attractive for electrochemical CO conversion. Nevertheless, it is struggling to use a single active site to overcome the linear scaling relationship among intermediates. Herein, an isolated diatomic Ni-Mn dual-sites catalyst was anchored on nitrogenated carbon, which exhibits remarkable electrocatalytic performance towards CO reduction.

View Article and Find Full Text PDF

Precious metal-based single-atom catalysts (PM-SACs) hosted in N-doped carbon supports have shown new opportunities to revolutionize cathodic oxygen reduction reaction (ORR). However, stabilizing the high density of PM-N sites remains a challenge, primarily due to the inherently high free energy of isolated metal atoms, predisposing them to facile atomic agglomeration. Herein, a molten salt-assisted synthesis strategy is proposed to prepare porous PM/N-C (PM = Ru, Pt, and Pd) electrocatalysts with densely accessible PM-N sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!