During the frying of foods, undesirable reactions such as protein denaturation, acrylamide formation, and so on occur in the product, which has confirmed carcinogenic effects. The use of antioxidants has been proposed as an effective solution to reduce the formation of these compounds during the process. The current study aimed to assess the impact of an edible coating holding within chia seed gum (CSG) and Rosa canina L. extract (RCE) nanoemulsions on the physicochemical properties, oil uptake, acrylamide formation, 5-hydroxymethyl-2-furfural (HMF) content, and sensory characteristics of beef-turkey burgers. The RCE-loaded nanoemulsions were prepared using the ultrasonic homogenization method, and different concentrations (i.e., 10%, 20%, and 40% w/w) were added to the CSG solutions; these active coatings were used to cover the burgers. CSG-based coatings, especially coatings containing the highest concentration of nanoemulsions (40%), caused a significant decrease in the oil uptake and moisture retention, acrylamide content, and HMF content of fried burgers. The texture of coated burgers was softer than that of uncoated samples; they also had a higher color brightness and a lower browning index. Field emission scanning electron microscopy analysis showed that RCE concentration less than 40% should be used in CSG coatings because it will cause minor cracks, which is an obvious possibility of failure of coating performance. Coating significantly (4-10 times) increased the antioxidant activity of burgers compared to the control. In conclusion, it is suggested to use the active coating produced in this study to improve fried burger quality and modulate acrylamide formation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.17019DOI Listing

Publication Analysis

Top Keywords

acrylamide formation
16
fried burger
8
burger quality
8
active coating
8
rosa canina
8
canina extract
8
oil uptake
8
hmf content
8
acrylamide
5
formation
5

Similar Publications

HDAC3 inhibitors induce drug resistance by promoting IL-17 A production by T cells.

Sci Rep

December 2024

Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China.

HDAC3 has been demonstrated to play a crucial role in the progression of various tumors and the differentiation and development of T cells. However, its impact on peripheral T cells in the development of murine lung cancer remains unclear. In this experiment, a subcutaneous lung tumor model was established in C57BL/6 mice, and tumor-bearing mice were treated with the specific inhibitor of HDAC3, RGFP966, at different doses to observe changes in tumor size.

View Article and Find Full Text PDF

[Preparation and methodological analysis of chitosan-based ultrasound-coupled hydrogel pads].

Sheng Wu Gong Cheng Xue Bao

December 2024

The College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.

This study aims to optimize the process for preparing chitosan-based ultrasound-coupled hydrogel pads and investigate their application potential in ultrasonography. Chitosan, 2-acrylamido-2-methylpropanesulfonic acid, and N-isopropylacrylamide were used as the main materials to prepare chitosan-based ultrasound-coupled hydrogel pads. The free-radical polymerization conditions were optimized by a three-factor, three-level orthogonal test with the tensile strength and ultrasound image quality of the hydrogel pads as evaluation indicators.

View Article and Find Full Text PDF

In this work, magnetic molecularly imprinted polymer (MMIP) capable of selectively recognizing and adsorbing cordycepin was prepared. The MMIP was prepared using cordycepin as the template molecule, methacrylic acid and acrylamide as the functional monomer and ethylene glycol dimethacrylate as the crosslinker. The MMIP was analyzed using various techniques including transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, vibrating sample magnetometer and x-ray diffraction.

View Article and Find Full Text PDF

Discovery and biological evaluation of potent 2-trifluoromethyl acrylamide warhead-containing inhibitors of protein disulfide isomerase.

Eur J Med Chem

February 2025

Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, Taipei Medical University, Taipei, Taiwan. Electronic address:

Protein disulfide isomerase (PDI) regulates multiple protein functions by catalyzing the oxidation, reduction, and isomerization of disulfide bonds. The enzyme is considered a potential target for treating thrombosis. We previously developed a potent PDI inhibitor, CPD, which contains the propiolamide as a warhead targeting cysteine residue in PDI.

View Article and Find Full Text PDF

A flexible, water anchoring, and colorimetric ionogel for sweat monitoring.

Biomater Sci

December 2024

Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.

As water-saturated polymer networks, the easy water loss of hydrogels directly affects their end-use applications. Minimizing the ratio of free water and increasing the ratio of bound water in the gel system has become key to extending the service life. In this work, an ionogel is prepared that effectively regulates the proportion of free water and bound water through the formation of wrinkle angles by the hydrophilic and hydrophobic chains in the gel system and the non-volatile nature of the ionic liquid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!