δ-MnO is a promising cathode material for aqueous aluminium-ion batteries (AAIBs) for its layered crystalline structure with large interlayer spacing. However, the excellent Al ion storage performance of δ-MnO cathode remains elusive due to the frustrating structural collapse during the intercalation of high ionic potential Al ion species. Here, it is discovered that introducing heterogeneous metal dopants with high bond dissociation energy when bonded to oxygen can significantly reinforce the structural stability of δ-MnO frameworks. This reinforcement translates to stable cycling properties and high specific capacity in AAIBs. Vanadium-doped δ-MnO (V-δ-MnO) can deliver a high specific capacity of 518 mAh g at 200 mA g with remarkable cycling stability for 400 cycles and improved rate capabilities (468, 339, and 285 mAh g at 0.5, 1, and 2 A g, respectively), outperforming other doped δ-MnO materials and the reported AAIB cathodes. Theoretical and experimental studies indicate that V doping can substantially improve the cohesive energy of δ-MnO lattices, enhance their interaction with Al ion species, and increase electrical conductivity, collectively contributing to high ion storage performance. These findings provide inspiration for the development of high-performance cathodes for battery applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202312229DOI Listing

Publication Analysis

Top Keywords

δ-mno cathode
8
aqueous aluminium-ion
8
aluminium-ion batteries
8
ion storage
8
storage performance
8
ion species
8
high specific
8
specific capacity
8
δ-mno
7
high
5

Similar Publications

In Situ Growth of Covalent Organic Frameworks on Carbon Nanotubes for High-Performance Potassium-Ion Batteries.

Angew Chem Int Ed Engl

December 2024

City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.

Redox-active covalent organic frameworks (COFs) have been demonstrated as promising organic electrodes in many electrochemical devices. However, their inherently low conductivity significantly hinders the full utilization of their internal redox-active sites. To address this issue, a simple solvothermal method is used to in situ polymerize 2,4,6-triformylphloroglucinol (TP) and p-phenylenediamine (PA) on the surface of carbon nanotubes (CNTs), generating a nanocable-like COF-based nanocomposite, TpPa-COF@CNT nanocables, which contain abundant β-ketoenamine groups.

View Article and Find Full Text PDF

The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.

View Article and Find Full Text PDF

Background: Delayed lead perforation is a rare complication of cardiac implantable electronic device (CIED). Clinical presentations range from completely asymptomatic to pericardial tamponade. Surgical lead extraction is recommended and transvenous lead extraction (TLE) with surgical backup is an alternative method.

View Article and Find Full Text PDF

Deep brain stimulation (DBS), a proven treatment for movement disorders, also holds promise for the treatment of psychiatric and cognitive conditions. However, for DBS to be clinically effective, it may require DBS technology that can alter or trigger stimulation in response to changes in biomarkers sensed from the patient's brain. A growing body of evidence suggests that such adaptive DBS is feasible, it might achieve clinical effects that are not possible with standard continuous DBS and that some of the best biomarkers are signals from the cerebral cortex.

View Article and Find Full Text PDF

A novel proposal is introduced with an unlabeled electrochemical immunosensor for the detection of tumor broad-spectrum biomarker vascular endothelial growth factor (VEGF165) Copper-based metal organic frameworks (Cu MOFs)-carbon nanotubes (MWCNTs) were employed as its substrates, functionalized with methylene blue (MB) for signal enhancement. Cu-MOFs-MWCNTs nanocomposites were synthesized successfully via a solvothermal method and were then deposited on the surface of a glassy carbon electrode (GCE), with the addition of methylene blue to amplify the signal. Due to the expansive specific surface area provided by the carbon nanotubes and the amino groups facilitated by the metal-organic framework nanomaterials, the anti-VEGF165 monoclonal antibody was immobilized on the electrochemical immunosensor through covalent bonding, which could bind specifically to VEGF165, thereby causing a detectable change in the current.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!