Exploring the mechanisms underlying the toxicity of amyloid oligomers (AOs) presents a significant opportunity for discovering cures and developing treatments for neurodegenerative diseases. Recently, using a combination of ion mobility spectrometry-mass spectrometry (IMS-MS) and X-ray crystallography (XRC), we showed that the peptide KVKVLWDVIEV, which is the G95W mutant of αB-Crystallin (90-100) and abbreviated as G6W, self-assembles up to a dodecamer that structurally resembles lipid transport proteins. The glycine to tryptophan mutation promotes not only larger oligomers and enhanced cytotoxicity in brain slices than the wild type but also a narrow hydrophobic cavity suitable for fatty acid or phospholipid binding. Here, we determine the plausibility of a novel cytotoxic mechanism where the G6W's structural motif could perturb lipid homeostasis by determining its lipid binding selectivity and specificity. We show that the G6W oligomers have a strong affinity toward unsaturated phospholipids with a preference toward phospholipids containing 16-C alkyl chains. Molecular dynamics simulations demonstrate how an unsaturated, 16-C phospholipid fits tightly inside and outside G6W's hydrophobic cavity. This binding is exclusive to the G6W peptide, as other amyloid oligomers with different atomic structures, including its wildtype αB-Crystallin (90-100) and several superoxide dismutase 1 (SOD1) peptides that are known to self-assemble into amyloid oligomers (SOD1 and SOD1), do not experience the same strong binding affinity. While the existing chaperone-lipid hypothesis on amyloid toxicity suggests amyloid-lipid complexes perforate cell membranes, our work provides a new outlook, indicating that soluble amyloid oligomers disrupt lipid homeostasis via selective protein-ligand interactions. The toxic mechanisms may arise from the formation of unique amyloid oligomer structures assisted by lipid ligands or impaired lipid transports.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.3c00830DOI Listing

Publication Analysis

Top Keywords

amyloid oligomers
20
lipid binding
8
αb-crystallin 90-100
8
hydrophobic cavity
8
lipid homeostasis
8
lipid
7
amyloid
7
oligomers
7
binding
5
investigating novel
4

Similar Publications

Freeze-Induced Protein Assembly of α-Synuclein into Stable Microspheres to Fabricate Light-Induced Cargo Release Systems.

ACS Appl Mater Interfaces

December 2024

School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea.

Stable hollow-type microspheres (MSs) have been fabricated using α-synuclein (αS), an amyloidogenic protein, via freeze-induced protein self-assembly. This assembly process involves three steps: rapid freezing to form spherical protein condensates from αS oligomers, frozen annealing to form a crust on the condensate and freeze-drying to create an interior lumen via the three-dimensional (3D) coffee-stain effect. The crust produced during the frozen-annealing step is a β-sheet-mediated protein structure that is presumed to be created at the quasi-liquid layer of the protein-ice interface and thus contributes to the stability of MSs in aqueous solutions at room temperature without any additional surface stabilization.

View Article and Find Full Text PDF

Self-Assembly of Human Fibrinogen into Microclot-Mimicking Antifibrinolytic Amyloid Fibrinogen Particles.

ACS Appl Bio Mater

December 2024

MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.

Recent clinical studies have highlighted the presence of microclots in the form of amyloid fibrinogen particles (AFPs) in plasma samples from Long COVID patients. However, the clinical significance of these abnormal, nonfibrillar self-assembly aggregates of human fibrinogen remains debated due to the limited understanding of their structural and biological characteristics. In this study, we present a method for generating mimetic microclots in vitro.

View Article and Find Full Text PDF

The accumulation of amyloid β-proteins (Aβ) in the extracellular space, forming insoluble plaques, is a primary pathological process underlying Alzheimer's disease (AD). Among the various Aβ species that appear during Aβ aggregation, Aβ oligomers are considered the most neurotoxic form. However, the precise mechanisms of their molecular functions within the Aβ aggregation cascade have not been clarified so far.

View Article and Find Full Text PDF

The pathophysiological role of Aβ oligomers in the onset of Alzheimer's disease (AD) is heavily disputed, pivoting research toward investigating mixed oligomers composed of Aβ and Aβ, which is more abundant but less aggregation-prone. This study investigates Aβ:Aβ oligomers in different ratios, examining their adverse effects on endothelial cells, neurons, astroglia, and microglia, as well as in a human blood-brain barrier (BBB) model. Combining label-free Raman microscopy with complementary imaging techniques and biochemical assays, we show the prominent impact of Aβ on Aβ fibrillation, suggesting an inhibitory effect on aggregation.

View Article and Find Full Text PDF

The Beneficial Effects of Combined Exercise and Polyphenols in Alzheimer's Disease.

Phytother Res

December 2024

Graduate School of Education in Physical Education, Sangmyung University, Seoul, Korea.

Regular exercise enhances life quality, lowers the risk of cognitive damage, and slows the advancement of Alzheimer's disease (AD). Natural compounds rich in polyphenols have garnered attention as a non-pharmacological means of treating and preventing AD. The primary component of wine, grape seeds, and nuts is polyphenols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!