Acute pancreatitis (AP) is a potentially life-threatening inflammatory disease that can lead to the development of systemic inflammatory response syndrome and its progression to severe acute pancreatitis. Hence, there is an urgent need for the rational design of highly efficient antioxidants to treat AP. Herein, an optimized Cu-based metal-organic framework (MOF) nanozyme with exceptional antioxidant activity is introduced, designed to effectively alleviate AP, by engineering the metal coordination centers in MN2Cl2 (M = Co, Ni, Cu). Specifically, the Cu MOF, which benefits from a Cu active center similar to that of natural superoxide dismutase (SOD), exhibited at least four times higher SOD-like activity than the Ni/Co MOF. Theoretical analyses further demonstrate that the CuN2Cl2 site not only has a moderate adsorption effect on the substrate molecule •OOH but also reduces the dissociation energy of the product HO. Additionally, the Cu MOF nanozyme possesses the excellent catalase-like activity and •OH removal ability. Consequently, the Cu MOF with broad-spectrum antioxidant activity can efficiently scavenge reactive oxygen species to alleviate arginine-induced AP. More importantly, it can also mitigate apoptosis and necrosis of acinar cells by activating the PINK1/PARK2-mediated mitophagy pathway. This study highlights the distinctive functions of tunable MOF nanozymes and their potential bio-applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202310675DOI Listing

Publication Analysis

Top Keywords

metal-organic framework
8
acute pancreatitis
8
mof nanozyme
8
antioxidant activity
8
mof
6
activity
5
precise control
4
control metal
4
metal active
4
active sites
4

Similar Publications

An electrochemical aptasensor has been developed specifically for the sensitive and selective determination of ochratoxin A (OTA), one of the most important mycotoxins. The aptasensor utilizes a glassy carbon electrode that has been modified with toluidine blue (TB) encapsulated in a Zn-based metal-organic framework (TB@Zn-MOF). The results demonstrate that in the presence of OTA, the peak current of the differential pulse voltammogram (DPV) related to TB oxidation is notably decreased.

View Article and Find Full Text PDF

A novel electrochemiluminescence (ECL) biosensor was developed for the ultrasensitive detection of miRNA-155, based on the synergistic combination of multifunctional nanomaterials. The biosensor employed a conductive metal-organic framework (MOF), Ni(HAB) (HAB = hexaaminobenzene), as the substrate material. The unique π-electron conjugated structure of Ni(HAB) endowed the biosensor with excellent electron transport properties, significantly enhancing its sensitivity.

View Article and Find Full Text PDF

A simply designed quasi-ratiometric fluorescence probe for the visual and on-site detection of levofloxacin (LVF) residues in milk and fish sample.

Talanta

December 2024

College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China.

An europium metal organic framework (Eu-DBPA-Phen) was synthesized using 2,5-dibromoterephthalic acid (HDBPA) and 1-10-phenanthroline (Phen) as ligands. A straightforwardc quasi-ratiometric fluorescence probe was then developed for the detection of levofloxacin (LVF) by the simplistic combination of red-emitting Eu-DBPA-Phen and the inherent blue auto-fluorescence of the target. The probe exhibits the advantages of wide linear range (0.

View Article and Find Full Text PDF

Cobalt nanoparticles decorated hollow N-doped carbon nanospindles enable high-performance lithium-oxygen batteries.

J Colloid Interface Sci

December 2024

Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address:

Despite the ultrahigh theoretical energy density and cost-effectiveness, aprotic lithium-oxygen (Li-O) batteries suffer from slow oxygen redox kinetics at cathodes and large voltage hysteresis. Here, we well-design ultrafine Co nanoparticles supported by N-doped mesoporous hollow carbon nanospindles (Co@HCNs) to serve as efficient electrocatalysts for Li-O battery. Benefiting from strong metal-support interactions, the obtained Co@HCNs manifest high affinity for the LiO intermediate, promoting formation of ultrathin nanosheet-like LiO with low-impedance contact interface on the Co@HCNs cathode surface, which facilitates the reversible decomposition upon charging.

View Article and Find Full Text PDF

Corrigendum to "Ultrasmall iridium-encapsulated porphyrin metal-organic frameworks for enhanced photodynamic/catalytic therapy by producing reactive oxygen species storm" [J. Colloid Interface Sci. 677 (2025) 1022-1033].

J Colloid Interface Sci

December 2024

College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding 071002, PR China. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!